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CHAPTER I

INTRODUCTION

In this study some numerical issues related to the computational

solution of a generalized form of the algebraic matrix Riccati equation

are examined. The approach herein utilizes the generalized eigenprob-

lem formulation, which provides a powerful framework for the solution

of quite general forms of algebraic Riccati equations arising in both

continuous- and discrete-time applications. This general form is

derived from control and filtering problems for systems in generalized

(or implicit or descriptor) state space form. These equations play

fundamental roles in the analysis, synthesis, and design of linear-

quadratic-Gaussian control and estimation systems as well as in other

areas of applied mathematics. A representative sample of applications

may be found in [11-[4). It is not our purpose here to survey the

extensive literature available on Riccati equations, but, rather we

refer the reader to, for example [1]-[4] for references.

The method exploited here is a variant of the classical eigen-

vector approach to Riccati equations. Martenason [5] is one of the

best summaries of the eigenvector approach to solving algebraic Riccati

equations. However, the use of eigenvectors often encounters uumerical

difficulties in practical computation, especially when the correspond

ing eigenvalues are closely spaced. Thus, the method to be preferred

and the basis of this work employ Schur vectors instead of eigenvec-

tors because Schur vectors are more reliably and accurately computed.

The Schur method was first examined in detail by Laub [6], [ 7 and

3

,* 4 " , ,;,;', '',. "-. I ,", , ,".. . s"'", '",', , ', '.. " , '"-- -4-.-.-.' . _'.'.' ' .,.'_ I % -,: ,'.' ' , ,



NWC TP 6521

., then extended by Pappas, et.al. [8] and Emami-Naeini [9] for the

dscrete-time problem, and by Van Dooren [101 for the continuous- and

discrete-time problem. The very general formulation herein was derived

by Laub [i1)and expanded by Lee [121.

The numerical issue first examined in this thesis is the deriva-

tion of a Newton-type iterative-refinement procedure for the general-

Ized problem formulation. Kleinman [13] and Hewer [14] derived methods

of this type for the standard Riccati equation in the continuous- and

discrete-time characterizations, respectively.

Perhaps the most important issue studied here is that of condi-

tioning of the Riccati problem, that is, to define a measure of the

sensitivity of the numerical solution to changes in the data. Although

results are available on conditioning for problems such as linear

equations [15], [16] and eigenvalues [17J-[19], little is published on

the conditioning of the Riccati problem. A recent work in this area

for the continuous-time problem is by Byers [20]. The results of

numerical experiments examining various condition measures are reported

herein.

Since the behavior of many physical systems in engineering is

first modeled by second-order differential equations with very special

properties (i.e., symmetry and definiteness), we examine exploiting

this structure in certain computations of interest. Namely, we exploit

the structure in solving associated Riccati problems and in testing for

controllability and observability of the second-order models.

4
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1.1 Main Contributions of the Thesis

We regard the derivation of condition measures for the continuous-

and discrete-time generalized algebraic Riccati equation and the

evaluation of their numerical behavior in special situations as the

main contributions of this thesis. More specifically, we may list the

following contributions.

1. The derivation of a Newton-type iterative-refinement procedure

for the continuous and discrete algebraic Riccati equation that

has monotonic convergence that is quadratic in the vicinity of

the solution.

2. Establishing the equivalence between the given generalized

optimal control problem solution and the solution of a more

standard optimal control problem in certain cases.

* 3. Derivation of condition numbers for the solution of the gener-

alized Riccati equation.

4. A new algorithm for applying a change of coordinate transforma-

tion to the system model when the Riccati problem is solved

using the generalized eigenproblem approach.

5. Numerical experimentation to illustrate the behavior of known

and speculated condition estimates for the Riccati problem.

The numerical results demonstrate that a single satisfactory

condition estimate is not available.

6. Exploitation of the structure of second-order models to solve

efficiently the velocity feedback optimal control problem using

a generalized Riccati equation.

5
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7. Formulation of useful tests for controllability and observabil-
ity of second-order models directly in terms of conditions on

the model matrices.

8. Development of a portable FORTRAN software package for the

efficient, reliable solution of generalized algebraic Riccati

equations.

1.2 Outline of Chapters

In Chapter 2 we review some important concepts of numerical

analysis, which are used heavily in the succeeding analysis. The

concepts of numerical stability and conditioning are presented, and

there is a brief discussion of first-order perturbation analysis. The

application of Schur techniques for the solution of generalized alge-

braic Riccati equations is reviewed. Very general optimal control and

%filtering problems are formulated,vhich result in generalized algebraic

Riccati equations for the continuous- and discrete-time cases.

Chapter 3 derives a Newton-type iterative procedure, which we

employ for improving the numerical accuracy of the Schur solution of

generalized Riccati equations or for calculating new solutions when

problem parameters are changed by a small amount. Newton's method for

the standard algebraic Riccati equation in continuous- and discrete-

time formulations is reviewed first. Equivalence between the general-

ized solution and a certain standard solution is established. The

Newton procedure is then extended to the generalized case.

The subject of condition:ng of the generalized algebraic Riccati

equation is examiner 4 C .pter 4. The desired form of condition

6
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estimate is defined. Previous work in the area of conditioning of the

Riccati problem is reviewed. New condition estimates are then derived

using a first-order perturbation analysis. Balancing to improve the

condition of the problem is next considered. Balancing of the general-

ized eigenproblem is discussed firse. A new algorithm for applying a

change of coordinates transformation to the system model when the

Riccati problem is solved in the generalized eigenproblem formulation

is presented.

Numerical results for the solution of the generalized Riccati

equation for special cases are presented in Chapter 5. The software

package developed as a research tool to aid in the studies of this

thesis is discussed. Highlights of the package capabilities are

given. The numerical algorithms employed and sources for the software

are discussed and referenced. The results of three specially designed

examples are examined to illustrate the behavior of the Riccati solu-

tion and the ability of the known and new condition estimates to

predict the numerical accuracy of the solution.

In Chapter 6 second-order models are considered. The second-order

model structure is defined in the large space structure framework. The

generalized algebraic Riccati equation is considered for this problem,

and ways are explored to take computational advantage of the second-

-s order formulation to solve the Riccati equation. The velocity feedback

problem is shown to reduce to a simple form in this framework. Tests

for controllability (stabilizability) and observability (detectability)

7
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are then derived in terms of the model matrices for second order

V .models.

Finally in Chapter 7 we state the conclusions we have drawn from

this work and make recommendations for future research in this area.

, An appendix is included which contains the description (from the

actual software) of all the FORTRAN subroutines accumulated in the

software package.
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CHAPTER 2

BACKGROUND

In this chapter we review some important concepts and results

which form the basis for the work in the succeeding chapters. The

first section discusses the numerical analysis concepts of stability

and conditioning. The second section briefly presents the perturbation

theory necessary in later analysis. The third section reviews results

employing Schur techniques for the solution of algebraic matrix Riccati

equations. Very general optimal control and filtering problems are

formulated which result in generalized algebraic Riccati equations

(GARE) for the continuous- and discrete-time cases. Solutions for

these GARE are stated in terms of a generalized eigenproblem.

2.1 Numerical Stability and Conditioning

We shall now introduce the important concepts of numerical

stability and conditioning. The following framework will be useful for

the understanding of these concepts:

f D • S (2.1)
problem data solutions

or
model

Give d e D, we want to compute f(d) e S. However, frequently only d*

(near d) is known and only f* (an algorithm to approximate f) is

available. Figure 2.1 is a geometrical view of this problem-solving

process. Therefore, in this framework we seek f(d), but compute

f*(d*).

9
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! / True f

"f(d

FIGURE 2.1 Geometric view of the effect of data uncertainty
and computational errors in solving a problem.

2.1.1 .Nmerical Stability

Definition 2.1: An algorithm f* is numerically stable if for all d

I.. contained in D, there exists a d* contained in D and near d such that

f(d*) (the exact solution of a slightly perturbed problem) is near

f*(d) (the computed solution).
a',.

A That is, we expect that a stable algorithm will not introduce any

inaccuracies into the solution larger than those present in the data.

2.1.2 Problem Conditioning

Definition 2.2: If f(d*) (the exact solution of a slightly perturbed

problem) is near f(d) (the true solution), the problem is said to be

well-conditioned. If f(d*) may potentially differ greatly from f(d),

the problem is ill-conditioned.

J*%Q 10
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The four possible combinations of stability and conditioning are

shown in Figure 2.2.

f-)f d

d d 
fd

f (

SS

a) Well-conditioned problem b) Well-conditioned problem
Stable computation Unstable computation

fAf 
d

44

D' 
s

c) Ill-conditioned problem d) fll-conditioned problem
Stable computation Unstable computation

FIGURE 2.2 Possible combinations of problem conditioning and computa-
tion stability in the numerical solution of a problem.
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Although it may be impossible for the numerical solution process

to guarantee an accurate answer to an ill-conditioned problem, it is

desirable for the program to recognize ill-conditioning of the computa-

tions and report this fact to the user. Therefore, it is desirable to

associate data with a computing problem which reflects the overall

sensitivity of the solution to changes in the data (i.e., a condition

number). We can do this as follows [211:

Definition 2.3: Let D and S be finite dimensional metric spaces with

metrics Pd and ps, respectively. Let f(d) be the computing problem

under consideration. As before

f : D S

The absolute asymptotic condition number is

Psi(f(d), f(de))

c(f(d)) :- tim sup (2.2)
80 Pd(d,d*)=d a

Relative condition can be defined similarly [211. Figure 2.3

illustrates the concept of a condition number. One can see that K is a

measure of the sensitivity of the solution to perturbations in the

data. K can be interpreted as the factor by which the uncertainty, 6,

is multiplied by in the problem-solving process. Condition numbers are

generally estimated using perturbation theory.

12
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FIGURE 2.3 Geometric interpretation of the condition number, K.

2.1.3 Condition Number of a Matrix

Definition 2.4: Let I.I be a consistent matrix norm on Rnx n satisfy-

ing

III = 1 (2.3)

with a consistent vector norm on Rn . Let A c Rnx n , then

K(A) - IAU IA-11 . (2.4)

Now consider the computation of the inverse of a slightly perturbed

.9 matrix, i.e., find (A + E)- 1 .
9.

Theorem 2.1: If A-11 • IEI < 1, then

,(A) IEI
"_A--(_+)I _ < EA- (2.5)

* IA- 11 1-1C(A)IEI
IAI

1..3• , 13
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Proof: [151

The left hand side of the inequality is the relative error in

(A + )-1. If E is sufficiently small, the right side is effectively

K(A) IEI/IAI. Therefore, the theorem states that the relative error in

A + E my be magnified by as such as c(A) in calculating (A + E)- 1.

For this reason, K(A) is called "the condition number of A with respect

to inversion." Note that

1 - III - IAA- I < IAI IA-1 1 - K(A) (2.6)

2.1.4 Error Analysis

In the numerical solution of real problems, we compute f*(d*)

instead of f(d), so we would like to estimate If(d) - f*(d*)E. This is

the basic goal of error analysis. There are two main types of error

analysis of numerical computation and are referred to as forward and

backward error analysis.

i In the forward error analysis, one attempts to obtain a bound on

the error in the final result by starting with the original problem and

following, step by step, the effect of computational errors (round-off)

and original data uncertainty. However, the resulting bounds are

usually hopelessly pessimistic,and the analysis itself is very compli-

cated for all but simple problems [16], [221.

In backward error analysis, one does not attempt to compute If(d)

-f*(d*)I, but rather one attempts to determine how close the problem

actually solved is to the original problem. This is illustrated

graphically in Figure 2.4. In this technique, one uses error bounds to

14
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show that the computed solution of a given problem is near the exact

solution of a slightly perturbed problem. This is sufficient to ensure

that the algorithm that did the computations is stable.

d

Actual Error
Backward f

Error 
I

d

FIGURE 2.4 Illustration of backward error.

2.1.5 Role of Orthogonal Natrices

The class of orthogonal transformations has a special role in

numerical computations.

Definition 2.5: An orthogonal matrix U is a square smtrix with ortho-

normal columns. That is

U e Rnxn, U - (uI, u2 , ... , un )

and

T 10 1i-j

Properties of orthogonal matrices important to numerical computations

are

Theorem 2.2: Let U be orthogonal, then

15
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1) UTU - UUT - I ;
(2.7)

.% Jb2) IAUI2 - IUAI2 - IAI2 .

Proof: 1) UTU - I follows from the orthonormality of the columns of

U. It follows then that UT is the inverse of U. Since by definition

a matrix commutes with its inverse, we have UUT - I. Note that this

implies that the rows of U are also'orthonormal.

2) To prove this part, we make use of the facts that for A e

RmM, IA12 2 IATA12  and IAT12  - IA12  ([15], Theorem 4.2.10).

Now,

IUA12
2 . (UA)T UA 2 - A TU TUAI2 - IAT A 2 - IA12 2

and, therefore,

IAU12 - I(AU) Tn2 - MUTAT12 - IAT12 - wA12 .

From this it is easy to see that orthogonal matrices have three advan-

tages. First, they are easy to invert; U - UT. Second, orthogonal

*matrices are perfectly conditioned with respect to 1.12:

K(U) - IUI21UT12 - I • I - 1. (2.8)

A third advantage of orthogonal transformations is that perturbations

in the result can be accounted for by a perturbation of the same size

'S in the original problem. For example, having computed UTAU, we

introduce an error F into the result. If we set E = UFUT, then IE 2

= IF1 2 and

UT(A + E)u UTAU + . (2.9)

16
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This makes orthogonal transformations ideal for backward error analy-

sis. That is, multiplications by orthogonal transformations are

backward stable.

2.2 Perturbation Analysis

For the purposes of this thesis, we' employ a technique commonly

known as first-order-perturbation theory. This technique reveals the

effects of perturbations in the problem on the solution. The techrique

is generally applied in a three-step procedure. First, a form is

chosen for the approximate problem solution. Then the approximation is

substituted into an equation, and all term second-order or higher in

small quantities are deleted. Finally, the resulting linear equation

is solved for the unknown in the approximation.

To illustrate the technique, consider the problem of estimating (A

+ E)- 1 , where A is nonsingular and E is a "small-perturbation" matrix.

First we chose a form for the approximation as

(A + E)- 1 - A-'(I - H), (2.10)

where H is a "small perturbation" matrix. Substituting the approxima-

tion into the equation

(A + E)(A + E) - 1  = I, (2.11)

1 we obtain

(A + E)A-1 (I - H) - I - H + EA- 1 - EA-1H m I . (2.12)

Dropping the term EA- 1 H, which is assumed small in comparison to'E and

H, and solving the resulting equation gives us

" -= EA-  (2.13)

or

17
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(A + - 71 (I - EA7). (2.14)

We can now loosely derive the condition number of a matrix with

respect to inversion. From (2.14) we have

,(A + E)_1 - A71 = IA-1EA711 < IA-1I 2IEI (2.15)

Hence, we have

IA-11 < IA 111EI - K(A) IEN .(2.16)
IA-I - IAI

This differs from the bound of Theorem 2.1 (equation 2.5) by the factor

1 (2.17)
I-K(A)IEI

IA1

which is negligible when NEI is small.

2.3 Solution of the Generalized Algebraic Riccati Equation (CARE) as a

Generalized Eigenproblem

In this section we shall present the method of solving the GARE

(both continuous- and discrete-time cases) via a generalized eigenprob-

lea. First, the GARE resulting from the optimal regulator problem will

be derived. Then the optimal filtering problem will also be stated, and

the corresponding GARE given. Finally, the solutions to the CARE will

be formulated utilizing the generalized real Schur form of the general-

ized eigenproblem.

2.3.1 Optimal Regulator - Continuous-Time Problem

Consider the following general time-invariant deterministic linear
optimal regulator problem:

System: E(t) - Ax(t) + Bu(t) ; x(to) xo  (2.18)

y(t) - Cx(t)

18
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Criterion: J -Z fO (yTQy + uTiu + 2 xTSu)dt (2.19)

where

x e RP; u c Rm; y e Rr; (2.20)

E,A c Rmm; B c RIm; C Rrn,

Also, 0 -Q T e Rrxr; R - RT e Rmxm; S aRnxm;

and

T -[C TQC j > 0 ; Q,R > 0 ; E tonsingular.

Application of Hamilton-Jacobi theory gives rise to the following

equations:

h 1 (x CQCx + 2zs T 4Su uu) +p T(Ax+ Bu-E;) (2.22)

3h d 3h"-25'- o X+pu-1
l-.u;7P 1-E (2.23)

M-3 d Mab3 0 a CTQ, + Su + A:p + ET; (2.24)
ax

. In the usual treatment E - I and S - 0. equation (2.25) is solved
for u, and u in then substituted to (2.23) and (2.24) to obtain the

• " Hamiltonian system

[ BR-B T ] [x(.6
Sh- d TQC --AT (2.25)

ifw e h is the sRicaatm substitution" p t Xx, we are led to the

algebraic Rieatl equation for l

19
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ATX + XA -XBR-IBCT X CTQC - 0 (2.27)

If the pair (AB) is stabilizable and the pair (C,A) is detectable,

then a unique non-negative definite solution X - XT > 0 exists such

that the linear control law

u0 . _ -i 1 Tx (2.28)

stabilizes the system and is optima]? in the sense that it minimizes the

criterion (2.19) over all other control laws ['].

In the more general setting we have the following Hamiltonian

4 system

E A- o B1ST -BR 1BT
- (2.29)!0 E T _ SR71s T -cT C -(A-BR-'s T ) T

If one makes the "Riccati substitution" p - XEx, we are led to the GARE

0 - (A-BR-IST)TXE + ETX(A-BR-1ST) - ETXBRIBTXE + cTQC - SR-IST

XE ATxE + ETXA _ (B TXE + ST)T -1 (BTXE + ST) + CTQC (2.30)

and the optimal control law is given by

u0 - R-I(S T + BTXE)x . (2.31)

To solve for X - XT > 0, one can use the technique suggested by

Pappas, et.al. [8] for the discrete time ARE as expanded by Lee [121.

Before presenting this technique, we will formulate the other problems

of interest.

2.3.2 Optimal Filter - Continuous-Time Problem

, Consider the following time-invariant linear optimal observer

problem

20
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System: Ex(t) - Ax(t) + Bu(t) + Dv(t), (2.32)

y(t) - Cx(t) + w(t), t > to,

where IV(t)I c is a white noise process with intensity
Lw(tU

r > 0 (2.33)
STS

Also, (2.20) applies, E is nonsingular and D e Rnxt. Furthermore,

the initial state x(to) is uncorrelated with v and w, and u(t) is a

given input to the system.

The optimal observer is given by

E(t) - Ax(t) + Bu(t) + K0 [y(t) - C(t)) , (2.34)

which minimizes the weighted mean square reconstruction error

18 {eT(t)We(t)l , (2.35)

where

e(t) - x(t) - i(t); W - WT > 0 . (2.36)

Let

S- ES , (2.37)

Then K0 is given by

k, " -g + EXCT ] R- , (2.38)

where X solves the following GARE:

0 - (A-SR-C)K T + EX(A-SR-1C)T - EXCTRICXET + DQDT_ SR-IgT. (2.39)

One can see that this GARE is the dual to (2.30), and, therefore,

we can solve for X by the same technique.

2.
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*" 2.3.3. Optimal Regulator - Discrete-Time Problem

V 'Consider the following general discrete-time, time-invariant

deterministic optimal regulator problem:

System: Exk+j - Axk + Buk ; x(0) - x0  (2.40)

Yk -x

Criterion: j 1 ! (ykTOyk + ukTRuk + 2xkTSuk )  (2.41)2 k0

where (2.20) and (2.21) apply also except we only require R > 0.

Application of the discrete maximum principle [231 gives rise to the

'V set of equations

h I xkTcT0Cxk +  T T Ak+ 2.42)
k T Rk+ k xk Suk + Pk+1 A k (2

ET _ 3h k _ T Su+AT(.3ETPk QCxk + k Pk+1
e.,= = TXk+Su +A (2.43)

3h k 0 - Ruk + S Txk + B Tpk+1 (2.44)

3 Uk
. .

Exk+ I  - Axk + Buk  (2.45)k Pk+l

where hk is the scalar Hamiltonian, and Pk e Rn is the costate

vector.

Assuming for the moment that R is invertible, we can solve (2.44)

for uk and substitute into (2.43) and (2.45). Also, we make the

"Riccati substitution" Pk - XExk to obtain the following discrete

version of the GARE (for nonsingular X):

22

.



NWC TP 6521

ETXE - (A- BR-ST)T( -1 + BR-IBT) - (A - BR- T

+ CT QC SR-ST . (2.46)

This equation can be algebraically manipulated into the following

equivalent form:

T T
ETXE -(A _ BR-isT ) X(A - Sk-is T )  (A - BR-1 T )

+ BTXB)-B TX(A - BR-IST) + CTQC - SR-IST (2.47)

TX T- T T
ATxA - (A xI + S)(R + B XB)-(ATXB + S)T + cT QC. (2.48)

Note that (2.47) does not require X-1 explicitly, and (2.48) does not

require X- or R71 explicitly.

Once X is determined from the above GARE, the linear optimal

feedback is given by

0 O -(R + sBTxB)-I (ATX + T (2.49)

As in the continuous-time case, stabilizability and detectability

assumptions assure the existence and uniqueness of X X 1T > 0 such

that (2.49) is a stabilizing feedback.

2.3.4 Optimal Filter - Discrete-Time Problem

Consider the following discrete-time, time-invariant linear a

optimal observer problem

System: Exk+I - Axk + Buk + Dvk

Yk Cxk + Wk k > 0 (2.50) %
4%

23
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where vk c R1 and wk c Rr are zero mean sequences with

'p. [vkl [v w~] QS
, k P [sT 6k (2.51)

Q T Rtxl' S Rxr T Rrxr

Equation (2.20) applies, E is noneingular and D e Rnxl. The input

sequence uk is known, and the initial state x0 is uncorrelated with

vk and wk .

It can be shown that the optimal observer is given by

Ek+I - A:j + Duk + K0(yk - Ck) . (2.52)

The weighted mean square reconstruction error

_o~x - ;k)TW(xk - (2.53)

where W > 0, is minimized when K is chosen to be

-
0 " (AXCT + DS)(CXCT + R)- 1  (2.54)

and X is found by solving the GARE:

EXET n AXAT + DODT _ (AXCT + DS)(CXCT + R)-I(AXCT + DS)T (2.55)

or equivalently

. EXET = (A - DSR-1C)X(A - DSi-C)T + DQDT - DSR-1STDT

- (A - DSR-IC)XCT('CXCT+Rt)-cx (A - DSR-1C)T  (2.56)

Equations (2.55) and (2.56) are dual to (2.48) and (Z.47), and we can

solve either problem using the same technique. We shall now present a

technique for solving the GARE.

24
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2.3.5 GAOE Solution - Continuous-Time Case

We will work in the context of the regulator problem for conven-

ience. If we define

_BR-IT -BR1BT (. 57
y - [] ; L- [; ET- [ssT CTQC _(A-Br.1sT)TJ (2.57)

Then we can associate with (2.29) a generalized eigenproblem

XLy - My. (2.58)

Theorem 2.3: (Generalized Real Schur Form) let L, M e R2nx2n and

define the matrix pencil XL - M. The pencil is said to be regular if

det(XL - M) t 0. There exist orthogonal transformations P and Z such

that

PT(AL - M)Z - ApTLZ - PT Z - XL - H (2.59)

where L is upper triangular and A is quasi-upper triangular. For the

1x1diagonal blocks, the generalized eigenvalues are real Xi - &iIii

(possibly "infinite" if iii - 0). The 2x2 blocks correspond to a

finite pair of complex conjugate eigenvalues. Moreover, these eigen-

values can be arranged in any desired order.

Proof: [101

It can be shown for L and M, as defined in (2.57), that if A is a

generalized eigenvalue of AL - M, then -X is also (Hamiltonian property

of the eigenvalues). If the transformed pencil PT(AL - M)Z is parti-

tioned as

25
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PT(AL - M)Z-= X LI, LI [ 1 H1 (2.60)

1L0  L22J 0 M422]
where LI1 , HII c Rnx n , then the vectors corresponding to the first n

columns of Z span the eigenspace of ALI, - MII [10]. Moreover, we can

require that the real parts of the generalized eigenvalues of ALI,

IM be negative. If we partition the corresponding Z into nxn blocks

as

ziI Z121 - (2.61)[z21  Z22
we can state the following:

Theorem 2.4: With respect to the assumptions made for this generalized

eigenvalue formulation with L, M and Z as defined above,

1) Let V - Z then X - V2 1 V1 1' (2.62)

2 .1
solves (2.30) with X - XT > 0;

2) The generalized elgenvalues of ALI, - H11 are the closed-

loop eigenvalues of the system under the optimal feedback

uO(t) . -R-1(ST + BTXE)x(t)

Proof: [12]

The above method depends explicitly on R- 1 and can encounter

computational difficulties when R is ill-conditioned with respect to

inversion. If this is the case, the following compression technique

due to Van Dooren [10] can be employed. Arrange equations (2.23)

'. through (2.25) as

26
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[E 0 0 1A 0 B

'E - AT -S (2.63)

0 0 0 a L S T  BT R u

Determine an orthogonal matrix U e R(2nm)x(2nfm) such that

-1 B 0
U1 u12 - 0 (2.64)

o -. U 2 1 ! U 22R

where R e RUXU and is nonsingular. Then apply U to the pencil corre-

sponding to (2.63)

E0 0A 0 B

U X ET ] [CTQC -AT -S (2.65)

-0 0 j L S T  BT RJ

to obtain the pencil

[K - [1 [] + U12 ST B T. (2.66)ET T QC -AT

It can be shown [10] that the pencils (2.66) and (2.58) are

equivalent. Therefore, 4he pencil (2.66) can be used to solve for X

without having to invert R.

2.3.6 GAgE Solution - Discrete-Time Case

A, As in the previous section,we work in the context of the regulator

problem for convenience. The matrix pencil appropriate for this

problem can be formed from equations (2.43) through (2.45) as

27
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E0 0A 0 B

0 AT - -CTQC ET _S (2.67)

0 -BT  ] ST  0

Assuming for the moment that R is invertible, we can derive a pencil

equivalent to (2.67) in the form XL - M as

2,~~ ,,E B - 1BT  _BR -  ST 0

X-E)]_ [ (2.68)0 (A-BR-IST)T1  -CTQC+SR-1ST E(6

where L and M are defined appropriately. It can be shown that the

generalized eigenvalues of (2.68) have the symplectic property, i.e.,

if X is a generalized eigenvalue of (2.68), then I is also [12].

We can now solve the discrete-time problem in a manner analogous

to the continuous-time case. We first transform the pencil (2.68) to

the form (2.60) using orthogonal P and Z. Note if R is singular or

ill-conditioned with respect to inversion, we can compress the pencil

(2.67) to a pencil equivalent to (2.68) using the technique of

Van Dooren [10]. Now,ve will require that I'l corresponding to the

resulting pencil XL11 - H1 be less than unity. If we partition Z as

in (2.61), we have

Theorem 2.5: With respect to the assumptions made for this generalized

eigenvalue formulation with L, M,and Z as defined above,

1) Let V [ Ij then0 Z th n

X = V2 1 V11
-  (2.69)

solves (2.48) with X - XT  0;

28
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2) The generalized eigenvalues of L11 - MI are the closed-

loop eigenvalues under the optimal feedback

U k - -(R + BTXB)- (ST + BTXA)xk

Proof: [12J

Note that in this discrete-time problem, neither the solution of

the GARE nor the optimal feedback depends explicitly on R- I as in the

continuous-time problem. The special case R - 0 is called "deadbeat

control" and is discussed for the case S - 0, E - I, utilizing the

above methods for solution in [24].

29
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CHAPTER 3

ITERATIVE REFINEMENT BY NEWTON'S METHOD
.-,

Numerical implementation of the GARE solution methods of Chapter 2

is relatively straightforward. Proven stable algorithms exist that are

coded into reliable FORTRAN software (see Chapter 5). However, the

GARE may be ill-conditioned, and the resulting numerical solution may

not be as accurate as desired. This chapter presents an iterative

refinement procedure utilizing Newton's method. This procedure is

presented for the continuous- and discrete-time problem. The continu-

ous-time method is based on Kleinman [13], and the discrete-time method

is based on Hewer [14.

3.1 Iterative Refinement of Continuous-Time Solution

The following result is due to Kleinman [13) for the controllable

case, which was extended to the stabilizable case by Sandell [25].

This result is for the ARE and is presented here in detail, although

from a slightly different approach, to provide the groundwork for

extension to the GARE.

Given the system (2.18) and criterion (2.19) with E-I, Q-I and

S-0, the resulting ARE from (2.27) is

ATx XA - XBR-1BTX + CTC - Q. (3.1)

If the pair (A,B] is stabilizable and the pair [C,A] is detectable, then

there exists a unique solution X-XT > 0 to (3.1), such that the

linear feedback

% 31
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S.RBXx :- -Kx (3.2)

stabilizes the closed-loop system and minimizes the criterion (2.19).

IFurthermore, it can be shown that

J(x0 ;u
O) - min J(x0 ;u) - xTXo .  (3.3)

, u

To derive the Newton iteratiie procedure, consider at the k-th

iteration that the solution X of (3.1) is of the form

X - Xk + 8X , (3.4)

where 8X is "small", ioe., can neglect second-order terms in X.

Substituting (3.4) into (3.1), we have

0 - ATXk+ XkA-XkBR-' BTXk+'Tc+aX(A-BR-'BTXk)+(A-BR-1BTXk)TSX. (3.5)

Denote the solution of (3.5) at the k-th iteration by 8Xk, and let

'X - Xk - Xk . (3.6)

Substituting (3.6) into (3.5) and simplifying, we have

0 - (A-BKk41)TXk+l + Xk+l(A-BKk+) + CTC + Kk+RKk+l , (3.7)

where

Kk+" - R7BTXk , (3.8)

and A-BKk+j1 is the closed-loop-system matrix.

Equation (3.7) is a Lyapunov equation in the unknown Xk+1 and

its unique non-negative definite solution is given by

° '32
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e(A-BKk+l T ) t  (CC+T (A-BKk+ )t
Xk+ 1  e C + Ki+lRKk+l)e tdt, (3.9)

which is finite, if and only if, the closed-loop-system matrix is

stable (i.e., has eigenvalues with negative real parts). It can be

shown that

T TT
X- X2 - e (A-BK2) T[(KI-K2 ) R(KI-K 2 )-(K1-K2) T(B TX -RK2 )

- (BT XI-RK2 )T(KI-K 2 )]e (A-BK2)tdt (3.10)

or, alternatively,

X- - e(A-BK)T t[(K1-Kz)TR(Kj-K2 ) - (K1-K 2 )T (B Tx2 -RK2 )

- (BTX2-RK2 )T(KI- K2 )]e (A-BK1)t dt. (3.11)

We can now state and prove the main result of Kleinman [13] as

extended by Sandell [251.

Theorem 3.1: Let Xk, k-0,1,..., be the unique non-negative definite

solution of the linear algebraic equation

T + TC T
0 - (A-BKk) X.k + Xk(A-BKk) + R Ck (3.12)

where, recursively,

K._ - RITXk_ , k - 1,2,..., (3.13)

and K0 is chosen such that the matrix (A-BK0 ) is stable. Then,

1) s O<X<Xk+1<Xk <..._X

2) Linkr.,. 1XL -

.5' " 3) in the vicinity of X, IXk+1-Xl < C21Xk-X 2  ,

where C2 is a finite constant.
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Proof: 1) Let X0 satisfy (3.12) for the chosen K0. Now set

K1- RB X0 and let X1 be the associated solution to (3.9).

Using (3.10), we obtain

X0- X, e(ABKi) t(KO-Kj)TR(KO-K1)e (A-BK)t dt > 0
0

so that X1 _ X0 . In addition, we have by (3.11)

T(A-BK -e (A-BK I)t

Hence, X1 is bounded above and below and, therefore, has finite norm.

Thus, (A-BKI) is stable so X1 satisfies (3.12) with k-I. Repeating the

.No' above argument for k-2,3,... yields the desired result.

2) Taking the limit of (3.12) as k-o , we obtain

0 - ATX + X A -X BR-1BTX + cTc. (3.14)

Since X is the unique non-negative definite solution of (3.14), X - X.

3) Set K1 - R-1BT X and K2 - R-IBTX in (3.11) and take the

norm to find

- < f' le (A-BKk+I)TI2dT IBR-1BTI IXk-XE2 " (3.15)

Since (A-BKk+l) is stable, it can be shown that, uniformly in k,

00 f A-BUT' 2
Is I ek+1)t dT < constant - C1

0~0

Let C2 -CIIBR-1BTI, and the proof is complete.

34
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It should be noted that another iterative scheme is possible and

has been used in practice [26]. One simply solves (3.5) at iteration k

for 6 Xk and then takes

Xk+ 1 - Xk + Xk • (3.16)

It has been shown [27] that

limk-a SXk - 0 (3.17)

and

iiS - xk - X . (3.18)

This procedure, while theoretically equivalent to Theorem 3.1, has some

computational drawbacks. Namely, it requires more machine operations

and if the initial guess for X0 is nonsymmetric, then Xk+ I will be

nonsymmetric at each iteration.

Before we extend Theorem 3.1 to the general case, we first want to

show that solving the GARE (2.27), which results from the generalized

state space system (2.18) with criterion (2.19) and then applying the

optimal feedback (2.31), is equivalent to solving a "standard" regula-

tor problem when E is invertible.

We will always assume that E is invertible since when E is singu-

lar the GARE (2.27) does not, in general, have a solution. However,
.

even though E is assumed nonsingular, it is computationally undesirable

in many cases to invert E and solve the equivalent standard problem. A

,C. method for solving the generalized regulator problem when E is singular

has been proposed by Cobb [283 and involves decomposing the problem
.,

into a standard part and a nonsingular E part.

35
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Theorem 3.2: Solving the generalized regulator problem of section

2.3.1 is equivalent to solving the following "standard" problem
V-

;6x+ 16

y - Cx, (3.19)

with criterion

J I fo(Y T + 2xTsu + uT Ru)dt (3.20)
0

where

A - E-1A

B- E-B. (3.21)

Proof: The ARE corresponding to this problem is

0 (jiR.-IjST)TI + X(A IST) -ERIITI + cTQc - SRLST

- (A-BR- sT)TE-TRX + X E-1 (A-BR-7ST) E- -BR- 1 BTE-TX

+ cTQc - SR1ST. (3.22)

The optimal control law is

0 1 -- T
uo . _ (BX + S )x

-R-1(BTE-TX + sT)x, (3.23)

which results in the closed-loop system

E- I (A-BR- S T -BR- I TE-TX)x. (3.24)

Now, if we note that

'4 - T
X -E XE (3.25)

then (3.22) is equivalent to (2.27),and (3.24) is equivalent to (2.18)

with the feedback (2.31), that .is,

36



NWC TP 6521

...

E; - (A-BR-1ST -BR-IBTXE)x. (3.26)

Now we will extend Theorem 3.1 to the general case.

Theorem 3.3: Let Xk, k-0,1,... be the unique non-negative definite

solution of the linear algebraic equation

T T + TC+ T T
0 - (A-BKk)XkE + E Xk(A-Bk) +CQ+ k- Sk - (Sk)

(3.27)

where, recursively,

., -1 (BTX,_ E + ST) , k-1,2,... (3.28)

and where K0 is chosen such that the matrix E- (A-BK0 ) is stable. Then

1) 0< X < Xk+ 1 _ k_...<O

2) Ximk__ Xk - k

3) in the vicinity of X, IXk+ - XI < C2 1Xk - XI'

A where X solves the GARE (2.27), and C2 is a finite constant.

Proof: 1) We employ the results of Theorem 3.2 to convert the problem:

from (3.25) let

X . E-T E- 1 (3.29)

and substitute in (3.27) and (3.28) to obtain

o-[E-'(A-Bk)I~ + XkE 1 (A-B~k.) + CTQC + YR

S(3.30)

S%.where

4?.

Kk R-R1(E1B)Tk + ST (3.31)
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N. Then

k -i[E(A-Bk)]TtCTQC + -T T

e (A-BK)tdt (3.32)

when E-(A-BK-k) is stable. It can be shown that

:: ": X! - X2 = f: e(E-I (A-BK2)]T[(t _2T( _2

(E- {(E .4)Til _ + - (A-BK2)tdt

(3.33)

or, alternatively,

f- e[ -1(A-Bij)]Tt(liZTRil4 2N0
I- ( i1 -i {(E-1B)TR - g + sT

.- {(EIB)TR2 - &2+ ST}T(K I_ 2)]eE- (A-BK1)tdt

(3.34)

I- '~Now let RO satisfy (3.30) for a KL chosen such that E-(A-Bi0 ) is

stable. We remark here that by Theorem 3.2, this is equivalent to

stabilizing E-I(A-BK0 ). Set K1  R-7 ((E-'B)Tx0 + S T),and let Xi be the

associated solution to (3.32). Using (3.33), we obtain

.O - i, e f e[ - (A-Bi)]T t[ (j0-K)TR(0-KO )]eE- (A-BKi)tdt>O

0 n(3.35)

so that 1 iLJ. In addition, we have by (3.34)

38



NWC TP 6521

- - S e[E- (A-Bil ) ]Tt[(il_- )TR(j -i )]eE -L(A - Bil)tdt > 0.

(3.36)

Hence, X1 is bounded above and below and, therefore, has finite norm.

Thus, E-I(A-BKi) is stable so X1 satisfies (3.30) with k-I. Repeating

the above argument for k-2,3,... yields

0< X< Xk+l - -<" _<O

Since by (3.29) E is a congruence transformation on X to yield X, the

desired result is implied.

2) Taking the limit of (3.27) as k-, we obtain after some

manipulation

0 - (A-BR-sT) TxE + ETX.(A-BR-1ST) - ETX BR-BT XME

+ cToc - SR-IST . (3.37)

Since X is the unique non-negative definite solution to (3.37), X - X.

3) Set RI R- I [(E-IB)T k + sT] and K2 - R-[(E-IB)Ti + sT]

in (3.34) to find

- - eE'(ABfk+) Tt (XE.IRBTET

- -(-)e - (A- )t dt. (3.38)

Substitute (3.25) into (3.38) to obtain

39
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T - [E-1(A ) ]Tt T 
T

E (X.k~l-X)E -f 0Ik1ItT(xB~B

(_XeE - I (A-BYk+l )t dt. (3.39)

fte-multiply (3.39) by E - , post-multiply by E -, and take the norm to

find

lXk+l - XI <f'ieE-l(A-Bk+)t 2dtE-1j21EI21BR1BTIXk-X,2.

(3.40)

It can be shown that, uniformly in k,

oI eE-'(A-Bk+l)t,2dt < constant- C.

Let C2 - CIK 2(E)IBR-'BTI, and the proof is complete.

We remark that the proof to part 3 indicates that the square of

the condition of E with respect to inversion, K2 (E), influences the

convergence rate of the algorithm multiplicatively.

3.2 Iterative Refinement of Discrete-Time Solution

An iterative scheme is possible for the discrete-time formulation,

and it was first reported by Hewer [14]. The result is for the dis-

crete-time ARE, and the proof given here is similar to the continuous-

time case.

Given the system (2.40) with criterion (2.41) with E-I,,Q-I, and

S-0, the resulting ARE from (2.48) is

X a ATXA - AT XB(R+BTXB)-1BTXA + cTc • (3.41)

If the pair [A,B] is stabilizable and the pair [C,A] is detectable, then

there exists a unique solution X - XT > 0 to (3.41) such that the

linear feedback
5P. 40
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"-i (+TX y-BTx xk :-k k (3.42)

stabilizes the closed-loop system and minimizes the criterion (2.41).

One can follow a first-order perturbation-type derivation to

arrive at the Lyapunov equation that forms the basis of the following

theorem in a manner similar to that of the previous section for the

continuous-time problem. The following result is due to Hewer [14].

Theorem 3.4: Let Xk, k-0,1,..., be the unique non-negative definite

solution of the linear algebraic equation

Xk - (A-BKk)TXk(A-BKk) + RKk + C C, (3.43)

where, recursively,

K k (R+B T Xk-B)-1BXk-1 A, k-I,2,..., (3.44)

and K0 is chosen such that the closed-loop-system matrix (A-BK0 ) is

stable (i.e., has eigenvalues whose magnitudes are less than unity).

Then

1) 0 < X< Xk+1 S ... <.xO

2) Jtimk.,. Xk ' X

3) in the vicinity of X, IXk+ 1 - XI < C2 1Xk - Xl 2 .

where C2 is a finite constant.

:'-' Proof: 1) If (A-BKk) is stable, the unique non-negative definite

solution Xk of (3.43) may be written as
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'T 
I T-T4

-B ~ NW T 6521(346

It cn b shvn hatfor(A-BK 1) and (-K2)stbehn

X - X2 - (A-BK 1) T(X-X 2 )(A-BK) + (K-K 2) T(+TXB)(K-K 2)

+ [(R+BTX B) K2 _BTX AIT (Kl-K2) *(KlK2 )T[ (R+B TX B)K2

-BTXA] (3.46)

- j, [(A-BK2 ITN Kk)T (R+BT XB)(KIK)+[R+B TXKB)K

-B BT A ](KjK)[ (+3Tx T[+TB)K 2 )( B N,]

(A-BK2 (3.47)

TT

X0- -, (A-BK2) (X1-X2)(-K )T+B K-K) (R4B 1 )](K1-Kj )N

soA (3.48).I adton ehaeb (.7

X, X ?~ [(A-BK2 )T ]N(KK)T(R+BTXB) (KK)+(-BTXB)> K

442



NWC TP 6521

1,
Hence, X1 is bounded above and below and, therefore, has finite norm.

Thus, (A-BKI) is stable so X1 satisfies (3.43) with k-1. Repeating the

above argument for k-2,3,... yields the desired result.

2) Taking the limit of (3.43) as k-, we obtain

.X -AAT A X B(R+B X B)-1BX + C T. (3.50)

Since X is the unique non-negative definite solution of (3.50), Z.-X.

3) Set K, = (R+BTXkB)-BTkA and K2 - (R+BTXB)-IBTXA in (3.47),

and take the norm to find

,Xk+ X, < ,xk - X12B(R+BTx -1BTj0 ,(A-B!+11 2.

Since (A-BKk+j) is stable, it can be shown that, uniformly in k,

J0 <(A-BKk+1) N < constant - C1

Let C2 - CIlB(R+BT XB)-IB TI, and the proof is complete.

*It should be noted that another iterative scheme is possible here,

as in the continuous case, where one solves for a correction term to

the solution at each iteration. This procedure faces the same computa-

tional drawbacks as in the continuous case and, therefore, will not be

V discussed further.

Before we extend Theorem 3.4 to the general case, we first want to

show that solving the GARE (2.48), which results from the generalized

state space system (2.40) with criterion (2.41) and then applying the

optimal feedback (2.49), is equivalent to solving a "standard" regula-

tor problem when E is invertible.
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.

Theorem 3.5: Solving the generalized regulator problem of section

.,p 2.3.3 is equivalent to solving the following "standard" problem

1k+I - Alk + u

(3.51). , ~yk - Cxk  (.
-

_ with criterion

- k T (TQ 7k T Uk+ k(3.52)

where

,--B- (3.53)

Proof: The ARE corresponding to this problem is

A TA _ (ATHX+S)(R+T+I)-j((A X+S)T + CTQC
- ATE-TxE-A - (AE--B+S)(R BTE-T!V-B) - 1 (ATE-Tb-IB+s) T

+ CTQC . (3.54)

Jq. The optimal control law is

0 -(R+B XIY.(lTxB+S)T

S"- (R+E T -XEIB -1 (AT -i 1Es)T
.. ft - (3.55)

which results in the closed-loop system

Xk+ l - E'[A-B(R+BTE T EK'B)- (ATE-TE-B . (3.56)

Now, if we note that

ET XE (3.57)
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then (3.54) is equivalent to (2.48),and (3.56) is equivalent to (2.40)

with the feedback (2.49); that is,

-+l " [A-B( 'BT )-I (AT+)T]xk" (3.58)

Now we will extend Theorem 3.4 to the general case.

Theorem 3.6: Let Xk, k-0,1,... be the unique non-negative definite

solution of the linear algebraic equation

TkF (_%Tk T T
ETXKE - (A-BLK)TXK(A-BKK) + IKRK k + COGC

- SKk - (SKk)T (3.59)

where, recursively,

Kk - (R+BTXkB - 1 (BTX)- _IA+ST), k-1,2,..., (3.60)

and K0 is chosen such that the closed loop system matrix E-I(A-BK0 ) is

stable. Then

1) 0<X<Xk+ Xk <... < X

2) timkXk - X

3) in the vicinity of X, IXk+ 1 - XI < C2 1Xk- X12

where X solves the GARE (2.48), and C2 is a finite constant.

Proof: 1) We employ the results of Theorem 3.5 to convert the

problem; from (3.57) let

Xk - E-T E- ' (3.61)

and substitute in (3.59) and (3.60) to obtain
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k - [i-Bk B Kk.E1 (-BKk) + KRk+ CTQC

-SKk - (SKk)T (3.62)

where

(RBT 1 TE 71)i( -i T (3.63)

Then

-1 (E(A B,)TIN[-T ~4T T-AB~)
.0[( -ik KR" QC-SKk-(SKk)T][E1(~K~]

(3.64)

when E 1 (A-Bika) is stable.* It can be shown that

T10(-T-BlT](K_2TRT ET-T-

+ ((R+BTE-T 2E- 1 3)K2 -BT E 12 E1A ST)T(pK _I2)

+ ('I) T( (R.BTETi7-1 -TETi2E AS)T

[E-' (A-Bi 1 )IN (3.65)

or, alternatively

+ ((R+ T E-T IE-1 B)Ki. - B T ETiE 1'A - ST)T(iij2)

+ (F1 -2) T((R+BTE-T IE.B) 2 -B T ET 1 E.A..ST))

)IN

(E-(A-BK2 ).(3.66)
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Nov let Xo satisfy (3.62) for a K0 chosen such that E-I(A - BK0) is

stable. Let X be the associated solution to (3.64). Using (3.66) we

obtain

X0- 1 [( E -1 (A-BI))TIN[ ( I)T(R+BTE-T0E1B)('Ii 2 )

[E-1 (A-Bsl)]N > 0

so that X1  _ X0 . In addition, we have by (3.65)

i i NIO [(E-1 (A-Bi))T(N[(f )T(R.BTE-E 1 B)(ij-)]

E-1 (A-Bil IN > o.

Hence, X1 is bounded above and below and, therefore, has finite norm.

Thus, E-I(A-BFK) is stable so 11 satisfies (3.62) with k-1. Repeating

the above argument for k-2,3,... yields

o < - <  .... <- Y-

Since by (3.61) E is a congruence transformation on X to yield X, the

desired result is implied.

2) Taking the limit of (3.59) as k- we obtain

ETX E = ATX A TX B-S)(R+BTX B)-I(AX B+S)T + CTQC (3.67)

Since X is the unique non-negative definite solution to (3.67), X.-X.

3) It is easily shown from (3.65) that

44
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ET(XI-X 2)E NjO [(A-BK1 )TI [(Kj-K 2)T (R+BTX2B)(KI-K2)

+ (,a+BTXB)K2 _BTX _T)T K-)

+ (K-K2) T( (R+BTX2B)K2  'TI2AST) I [A-BK1 ]N.
(3.68)

Set K,- (R+B T XB)..1(B T XA+S T ad K2 (R+B T B)- BTXAT

in (3.68), and take norms to find

jIk. _ X, < ly X1~X2  1 12B(R+BTXBY1IBTI N (-B +1 2
k IE I NIO' (-K+1)

Since (A-BKik+i) is stable, it can be shown that, uniformly in k,

N-a(A-Kk ) 1 12 < constant - C1.

Let C2 -C 1 IE'I12IB(RB T )'B TI,and the proof is complete.
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CHAPTER 4

CONDITIONING OF THE ALGEBRAIC RICCATI PROBLEM

As stated in Chapter 2,it is desirable to associate a measure with

a computing problem which reflects the overall sensitivity of the

solution to changes in the data. It is the intent of this chapter to

derive such a measure (i.e., condition number) for the problem of

computing a solution to the GARE. To be most useful, the condition

number must be easily computable. It should not require additional
9.

computations on the same order of computing the solution itself.

We will first state the desired form for the condition number and

review previous work on condition estimates for the Riccati problem.

Then first order perturbation analysis will be employed to derive new

condition estimates for the continuous- and discrete-time Riccati

equations. Ways of employing balancing to improve the numerical

accuracy of the calculated solution will be discussed. An efficient

method for incorporating a change of model coordinates is presented.

4.1 Previous Work

We seek a relative condition estimate for the Riccati problem in

the following form:

Ix - X1 -C(X).e (4.1)

-, where X is the exact solution to the GARE, X is the computed solution,

C is a constant possibly depending on the size of the problem, c(X) is

the desired condition number, and Cm is the machine epsilon (preci-

sion). Machine epsilon is defined as the smallest positive
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number that can be added to 1.0 such that the machine recognizes that

the sum is different from 1.0. In this form, if K(X) is 0(10 N),

then the computed solution can be expected to differ from the true

solution by N significant digits.

We should note here that this type of indicator of solution

accuracy is desired because the more traditional method of examining

the size of the residual is not always reliable. The residual is the

remainder quantity obtained when the computed solution is substituted

in the original problem. That is, for the GARE (2.30) the residual is

residual :- (A-BR- ST)T xE + ETX(A-BR-1ST) - ET BR-1BTxE

+ CTQC - SR7IST . (4.2)

Stewart [15] explores in detail the behavior of the. residual in the

linear equations problem Ax-b and cites examples where the residual :-

* b - Ax is not a reliable indicator of solution (x) accuracy. There is

no reason to expect that the more complex problem of the GARE produces

residuals that are better behaved, even though counter-examples are

more difficult to construct.

We look for K(X) of the form:

K(X) - f(A,B,C,E,Q,R,S) . (4.3)

That is, K(X) should be a function of the matrices involved in the

GARE. We want the norms involved in (4.1) or in the computation of

K(X) to be the 1, - or Frobenius norm versus the 2 norm to minimize the

number of calculations involved.
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There have been several attempts to derive bounds for the solution

to the ARE [29]-[34], none of which are of the form (4.1). The follow-

ing result by Byers [20] is for the continuous-time ARE (2.27):

cB(X) - IC QCI + 21AIIXI+IBR-BTI IX+ICB.M ,Ac (4.4)
lXI SEP[A',-AJ

where

A - A - BR-1BTx (4.5)

inf
SEP(FG) :- IPIf IPF - GPI . (4.6)

Byers arrives at this bound via a first-order-perturbation approxima-

tion to (2.27). A notable feature of this condition estimate is that

it includes the effect of the separation of the closed-loop spectrum

(4.6) on the condition of the problem. For a detailed definition of

SEP(F,G) and a discussion of its properties see Stewart (351,[36].

Some speculation (6], (20] and empirical results suggest that a small

separation of the closed-loop spectrum causes loss of numerical accur-

acy in the computed solution (see Chapter 5). A potential drawback to

Byers' result (4.4) is the appearance of IX92 in the numerator and IXI

in the denominator. This would suggest ill-conditioning of the problem

when lXi is large or small, which is not necessarily true.

1' Martensson [5] showed that V11 , which .ust be inverted to form the

Riccati (2.27) solution, iL singular if the model is unstabilizable for

the case when eigenvectors are used as the basis for the stable eigen-

space in the solution process. Laub [7], Pappas, et.al. [81, and

Emami-Naeini [9] prove analogous results when Schur vectors are used as
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the basis for the stable eigenspace. This fact and the fact that V1 1

must be inverted (that is, a linear system of the form XV11 - V2 1 must

be solved for X) has prompted speculation [6], [71 that the condition

of V11 with respect to inversion, a(Vj1), might be a good indicator of

the condition of the Riccati problem (2.27). Indeed, empirical results

show that when V11 is ill-conditioned with respect to inversion, say

K(VII) is O(ION); then, in general, N digits of accuracy are lost in

the solution X. Since for the GARE solution, inversion of V1 1 involves

the inversion of E; then K(V1 1 ) can be expected to reflect any ill-

effects that near singularity of E might have on the solution. How-

ever, examples do exist (see Chapter 5) where the Riccati problem is

ill-conditioned, but this fact is not indicated by the magnitude of

OC(V 11).

Another indicator of numerical accuracy in the solution of the ARE

has been suggested by Paige and Van Loan [371. Their reasoning is

based on the following result*

Theorem 4.1: Let the unitary matrix E e Cnx n be partitioned in the

form

21W 2  W2

1W11

where W1 1 c Cmxm with m < . Then there are unitary matrices U =

diag (UI,U 2 ) and V - diag(Vl,V 2 ); UO,V1 e cmxm; U2 ,Vj £ C(n-m)x(n-m)

such that

Av a, (4.7)
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where

r - diag (TI Y2,-,TM ) > 0

a - diag (61,62,..., m ) > 0

-Y Y2 _Ym 1 (4.8)

Proof: [38]

The use of this theorem in [37] suggests that if we perform this

special singular value decomposition on the orthogonal Z found in our

I, reduction of the generalized eigenproblem (2.59) we have

Theorem 4.2: Given Z11 , Z2 1 as found in (2.59), (2.61)

1) Then there exists orthogonal U and V e Rn xn such that

A-q U T zl v - r - dtag (yI,y2, ...,Pyn ) ;

V. TU Z21V - A - diag(YY2"I)
uTz21v = - diag (61,62,'",*'n);

2 .4 2 -1; <1 (49)

y6+1 (4.9

2) If r is nonsingular, X = U diag(,..., 2u) U solves the

%

ARE (2.27).

Proof: 137)

The size of y1 is suggested in [371 as being an indicator of

*potential numerical difficulties in the solution of the ARE because

* "(I-YI2) /2/y1 - cotan yi (4.10)
IX12  Y 1 TI T (.0

and if X is computed on a computer having a machine precision E, then
eS-.

rounding errors of order e/yI can be expected to contaminate the

0 result. Therefore, 1/y, may indicate the condition of the ARE.
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We can relate I/Y1 to K(Z 11 ) (K(Z11 ) K ,(Vjj) for the ARE (2.27)),

which was suggested previously as a condition measure. Recall,

K(ZI ) - IZ11 12 IZII 1 2

M uax(G(Z1 1 )mn( 1)) (4.11)

* where o(Z1 1 ) denotes the set of silngular values of Z11 [151. There-

fore,

Yn=Y <_7- (4.12)

So we see the two estimates are of the same order unless all of the

%' singular values of Z11 are small.

4.2 First-Order-Perturbation Analysis of the GARE

To facilitate our analysis of the continuous-time Riccati problem

in this section,we start with the GARE (2.30) and make the following

definitions:

D : A-BR1ST

i. iG :-BR- 18T

H :- cTQC-SR-1ST• (4.12)

The GARE can now be written as

0 - DXE + ETXD - ETXGXE + H -: F (X) . (4.13)

Suppose that there is a small perturbation in F c(X), say Fc ; we would

like to know the effect of this perturbation on the solution X.

Theorem 4.3: For consistent matrix norms, and given a small perturba-

tion 8Fc to (4.13), we have for the resultant change in the solution 6X
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.~. >1NF I

16X (4.14)
IE IIA I+lEIITA I

C C

and

T
I(E)gc(E )18F IISX _ NEINET S -[E_ ,_C I (4.15)

-,ISEP[AE,-(AE-1 71

where

K(E) :- IEIIE-1 1 - condition of E with respect to inversion

A :- D - GXE - closed-loop-system matrix.

Proof: Starting with (4.13), define

F c(X-6X) := F (X) + 6F (4.16)Cc c

DT(X-6X)E + ET(X-6X)D - ET(X-6X)G(x-6x)E + H.

Neglecting second-order terms in 6X,

F (X-SX) - DTXE + ETXD xGxE + H - (D-GxE)T6xE

- ET6 X(D-GXE)

4F (X) - (D-GXE) TSXE - E T6X(D-GXE)

Therefore,

F-F - AT E + ET6XA (4.17)
c c c

Taking norms in (4.17),we have

NSF I < AT IItXIIEI + E TII1XIIA Ic - c C

which yields (4.14). We pre-multiply (4.17) by E -T  and post-multiply

by E- 1 to obtain
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-T-T
-E-T 6FcE-1  (A E- 1 )T6X + 5XA E-1

Taking norms we have

-T+ I ZA E-I+(A E-1 )TZI
IET 8F E- 1 1 - 16X

. /,,t IZI

where Z =- . Therefore,

:" IPA E-I+(A E - 1 T
:'ji ) Tpi1 18F

BE - inf c EpiI
. !+~R IE II6F I > ISM16X

c - IPI-1II

SSXISEP[A c E 1, -(AcE-I)TJ

which yields (4.15).

Theorem 4.4: Given the GARE (2.30), a relative condition number for the

solution X is

KA (X) := K(E)K (ET )I cTQC-SRST (4.18)
c IEIEB T I S E[ 1c -,-(Ac - )T]

where A - (A-BR-IST-BR1lBTxE).

c

Proof: To facilitate the analysis, we consider perturbations in Fc(X)

on the order of a perturbation in the constant term, i.e.,

S1F I < IHI -c , (4.19)

so that from Theorem 4.3 we obtain

16XI <(E)(ET )IHI E (4.20)
T7F- < IXINEB TI SEPA _E-(Ac _- )T]

From (4.20) we can make the following definition:
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cA (X) :- c(E)a(E T)IHI (4.21)
c XIE,ETI SEP[A E-_,-(A E-1 )T]

c C

:= relative condition number for the continuous-time

GARE.

We remark here that the condition number of Theorem 4.4 has the advan-

tage that it includes the effects of ill-conditioning of E with respect

to inversion, the separation of the closed-loop spectrum and the

ill-conditioning of R with respect to inversion when S is non-zero. It

does have the disadvantage of having IXI in the denominator, as did

Byers' result. Clearly, the form of the bound on the perturbation,

6Fc, dictates the form of the resulting condi±Aon number. One could

consider perturbations to all matrices involved in the problem with a

corresponding increase in the complexity of the resulting condition

number. However, at this point it is not clear that this is necessary,

and it is counter productive to our goal of a simple, easily computable

measure. The proper form of the bound on 6 Fc is a topic of continu-

ing research.

We now turn our attention to the discrete-time Riccati problem.

To facilitate our analysis, we start with the GARE (2.48) and make the

following definition:

Fd(X) :- ATXA - ETXE (A XB+S)((A XB+S)

+ CTQC - 0 (4.22)
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As in the continuous-time case, suppose there is a small perturbation

in F (X), say SFd , we would like to know the effect of this perturba-

tton on the solution X.

Theore 4.5: For consistent matrix norms, and given a small perturba-

tion 8Fd to (4.22), we have for the .resultant change in the solution 6X

%16Fd.

IM- I-h dm (4.23)
-IIIEI + IA d'A dI

and d d

I <XI < I T I A T (4.24)

-T d dIAdTIIAd I
K(E),cE)

if

IEII! I > ,(E)ic(E T)IAdT IIAd1 (4.25)

where

K(E) :- IEIIE-1 I - condition of E with respect tq inversion

Ad:= (A-BK) - closed-loop-system matrix

:K (R+BTXB) - j (ATXB+S)T

Proof: Starting with (4.22) define

d.Jd(X+) : Fd(X) + 6Fd

-AT(X+6X)A _ ET(X+aX)E + CTQC

- AT(X+8X)B+S(R+BT(X+X)B](AT(K+SX)B+ST

After expanding, neglecting second- or higher-order terms in 6X, and

some algebraic manipulation we obtain
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Fd(X+X) - Fd(X) - E + (A-BK)T6X(A-BK)

Therefore,

6Fd " -ET6XE + AdT XA d (4.26)

Taking norms in (4.26) we have

T T-1SF dI < IE II6XIIEI + IA d116XIIA dI

which yields (4.23). We pre-multiply (4.26) by E - , and post-multiply

by E-1 to obtain

E-T 6FdE- - -6X + (AdE-1)TaXAdE- 1 .

or
dX - (A dE-I)T 6XAdE-I - E-T 6 FdE- 1

Taking norms yields (4.24).

Theorem 4.6: Given the GARE (2.48),a relative condition number for the

solution X is

TOf IC QCI

KAd(X) TA (4.27)
IEIIE I T IA dT IR ld I~P(E)K(ET

4 where Ad - A - B(R+BTXB)- I(ATXB+S)T .

Proof: With reasoning similar to that for the continuous-time problem,

we consider a perturbation in Fd(X) on the order of a perturbation in

the constant term, i.e.,

I6FdI < ICTQCI m  (4.28)
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and the desired result follows from Theorem 4.5.

We remark here that when EmI, the requirement (4.25) becomes I >

T
IAd IlAd. This is always true for "some" norm since Ad is the closed-

loop-system matrix and all of its eigenvalues have magnitutde less than

unity. Therefore, Its spectral radius is less than one and there

always exists a norm that is arbitrarily close to the spectral radius

P(Ad) ([15], Theorem 6.3.8). Thus, one could argue in this case thatid

*T~c
Ad (X) I QCI
d IXU(1-P(

d )md

and the term 1-p2 (Ad) would have the effect of raising the condition

number when the spectrum of the closed-loop system has a pole near the

unit circle. For the case E * I, (4.25) can be a very restrictive

requirement and is a subject of continuing research.

4.3 Balancing to Improve Condition

Considerable success has been attained in increasing the numerical

accuracy of the solutions to linear equations and eigenvalue problems

by appropriate scaling of problem parameters [39), [40]. Therefore, it

is reasonable to expect that some sort of balancing or problem scaling

could improve the accuracy of the numerical computations invblved in

computing the solution to the GARE and, hence, the overall "condition"

of the problem. One could argue that since the numerical solution

depends fundamentally on the QZ algorithm for the generalized eigen-

4problem [41], that balancing the eigensystem for the generalized

eigenproblem ALy - My could improve the Riccati solution, Ward [42]
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has proposed a balancing algorithm specifically designed to precede QZ-

type algorithms. This balancing consists of permutations and two sided

diagonal transformations. The strategy is to scale L and H so that

their elements have magnitudes as close to unity as possible. Thus,

the large elements of L and H cannot mask the effect of the small

elements, as can often be the case.

Those interested in the details of the algorithm are referred to

[421 where the scaling strategy is discussed. Numerical results for

example eigenproblems are also given in [42]. Numerical experience in

solving the GARE has shown that this balancing strategy can increase

the accuracy of the solution; an example is given in Chapter 5. This

balancing can also increase the reliability of ,(Vll) as an indicator

of condition of the Riccati problem. However, one does pay the price

in increased computational time, about 10% of the QZ algorithm

computation time.

An alternate approach to the direct balancing of the eigenproblem

is to attempt some sort of coordinate change in the problem which

generates the Riccati equation. That is, some nonsingular transforma-

tion T to change coordinates in the original model as follows:

x(t) - Tw(t) (4.29)

or

- Tvk • (4.30)

There is reason to believe that the coordinate balancing transformation

proposed by Moore 1431 may result in a transformed Riccati equation

that is more amenable to numerical solution. Moore has shown [44] that
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by a change of coordinates, one can scale the relative size of compon-

TAt ~At T
ents of eAtB and e C Since, as we have already pointed out,

4 stabilizability of the model influences the computational accuracy of

the Riccati solution, one could argue that a change of coordinates

* * increasing the relative size of components of eAtB would be benefi-

cial prior to computing the Riccati solution. Specifically, More's

"internally balanced" coordinates in which the reachability and observ-

'ability gramians are equal and diagonal or "input-normal" coordinates

where the reachability gramian is identity are logical choices.

Laub [6] illustrated the effect of this coordinate type balancing

on the following linear optimal control problem: Find a feedback

controller u(t)-Kx(t) which minimizes the performance index

J(u) - f [x T(t)Qx(t) + u T(t)Ru(t)]dt

with plant dynamics given by

.(t) - Ax(t) + Bu(t); x(O) - x0

Assume Q-QT > 0, R-R T>0, (A,B) stabilizable and (A,C) detectable, where

C TC-0 and rank (C) - rank (Q). Then the optimal control is well known

to be

u(t) - -RE B TXx

where X solves the ARE

ATX + XA - XBR - 1BTX + Q 0 0
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Suppose we change coordinates via (4.29). Then in terms of the new

state w(t), our problem is to minimize

fM[wT(t)TTQTw(t) + u T(t)Ru(t)]dt (4.31)
0

subject to

;(t) - (T-IFT)w(t) + (T-B)u(t). (4.32)

The associated solution Xw of the transformed Riccati equation is

related to the original X by

X . T-TX T-1 (4.33)

w

One can see from (4.32) and (4.33) that if T is ill-conditioned

with respect to inversion and the balancing is applied as these equa-

tions indicate, then this technique can potentially introduce more

error into the solution than would originally have appeared. Hence,

the opposite of the intended effett could occur. Of course, one could

be careful to only choose a well-conditioned T, like a diagonal scaling

matrix for instance. However, if T is a modal or system balancing [43]

transformation, it could be quite ill-conditioned.

We can reduce this problem significantly in our generalized

problem formulation framework as the following result will show.

Theorem 4.7: If a change of coordinates of the form (4.29) is made in

the continuous-time generalized optimal regulator problem of section

2.3.1 or a change of coordinates of the form (4.30) is made in the

discrete-time generalized optimal regulator problem of Section 2.3.3,

then the solution X to the original problem may be found as follows:
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, ,

1) replace A by AT, C by CT, S by TT S and E by ET in the

appropriate. matrix pencils ((2.51) or (2.65) for the continuous

problem, (2.67) or (2.68) for the discrete problem)

2) determine the appropriate F, Z transformations for the

modified pencils and partition Z as in (2.61)

3) let V - [O" 0 Z, then X - (4.34)

solves the original GARE ((2.30) for the continuous problem, (2.48) for

the discrete problem) with X - XT > 0.

Proof: For the continuous-time case, the problem becomes in the trans-

formed coordinates

System: ET ;(t) - AW(t) + Bu(t)

y(c) - CT w(t) (4.35)

I r(sTW uT. +TT~dCriterion: J - .WT Ty + uTs + (4.36)

Application of Hamilton-Jacobi theory as in Section 2.3.1 gives rise to

a set of equations to which we can associate the following matrix

pencil:

Ths ~ ET J [TA-BR7IST )T .B-IB T 4". :X -(4.37)

0 TTETI -T T(CoSR_1ST )T _TT(ABR1S T)

This pencil can also be obtained by performing step 1 of the theorem on

the pencil associated with (2.57). Now we can factor (4.37) as

1- rE 0] ,A-,- -BR-1B T 0
•, -[(4.38)

L0T 0E LaC FT C-IS T -(A-BR1IST)l r9oOi
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If we perform the ordered transformation on (4.38) by finding a P and

as In (2.60) (as stated in step 2 of the theorem) and compare the

result with (2.60), we find

Z [ ?1 Z • (4.39)

L 1]

Recall from Theorem 2.4 that

X - V2 1V11-1 n Z2 1(EZ1 )-1  . (4.40)

Substitute (4.39) into (4.40) and the theorem is proved for the contin-

uous case. An analogous procedure proves the discrete case. We omit

those details.

Note from the theorem that the numerous occurrences of the inverse

of T have been eliminated. The inversion of T is essentially required

only once in the process of solving the linear system

XV11 - 1

for the Riccati solution X. Computational advantage has also been

realized because the number of matrix multiplications required in the

solution process has been reduced.
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CHAPTER 5

NUMERICAL EXPERIMENTS

The methods for solution of the GARE presented in Chapter 2, the

iterativq refinement procedure derived in Chapter 3, and the condition

estimates for the computed solution of Chapter 4 are all geared to the

efficient and reliable numerical computation of the Riccati solution.

This chapter describes a FORTRAN software package (RICPACK) developed

to aid in the study of the numerical conditioning of the algebraic

Riccati equation and other closely related topics. First, a brief

description of the package will be given. A short discussion of the

algorithms and software will follow. Finally, numerical examples and

results will be given to illustrate relevant aspects of the numerical

solution.

5.1 Software Package RICPACK

RICPACK was developed to aid in the study of the numerical condi-

tioning of the algebraic Riccati equation, methods for improving the

condition, and iterative refinement of the solution. The FORTRAN

subroutines in the package were written in modular form and are

designed to facilitate their incorporation in some larger computer-

aided control system design (CACSD) package or computer-aided systems

and control analysis and design environment (CASCADE).

A FORTRAN driver program has also been written,, primarily as a

research tool, that is user-friendly for use in an interactive "term-

inal" type environment. The program prompts for all necessary input.
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Convenient input default options exist not only for ease of data

input, but also for exploitation by the subroutines to reduce the

number and complexity of the computations. These options are also

designed to speed the input of more "standard" type problems. Table

5.1 lists the default options available.

TABLE 5.1

Default Options

Input Matrix Default Value

E Identity

0 Identity

S Zero

R Identity (or enter

diagonal elevents only,
4if diagonal)

Highlights of RICPACK capabilities include:

(a) Choice of calculation of the stabilizing (non-negative def in-

ite), anti-stabilizing (non-positive definite), or just any (possibly)

indefinite or nonsymetric solution to the GARE.

(b) Coordinate or system balancing of the system model [43], [45];

i.e., a special coordinate transformation on (2.18) or (2.40) of the

form

x(t) - T w(t) (5.1)

or

xk - T wk (5.2)

respectively, such that the observability and reachability gramians of

Athe transformed system are equal.and diagonal.
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(c) Ward's balancing (421 of the generalized eigenproblem (2.58)

or (2.68) (prior to the OZ transformation) which consists of permuta-

tions and two-sided-diagonal transformations.

(d) Direct handling of singular control weighting or singular

measurement noise covariance by compression of the extended pencils

(2.65) or (2.67).

(e) Direct handling of cross-weighting or noise correlation; i.e.,

S *0.

(f) Provision for robustness recovery procedure; i.e., to replace

the CTQC term in the GARE with Q + yCTC and iterate on y, the

driver program need only modify one block of the matrix pencil at each

iteration.

(g) Iterative refinement (or new solutions for small parameter

perturbations) by Newton's method and Sylvester equations; i.e.,

iteratively solving equations (3.27) or (3.59). As of this writing,

this is implemented for E - identity only because although algorithms

exist for solving these general Sylvester equations, reliable software

implementing these algorithm is not readily available.

(h) Model unstabilizability detection as indicated by the condi-

tion of V11 with respect to inversion in (2.62) or (2.69); V11 is
singular for an unstabilizable model.

(i) Calculation of unique stabilizing solution for stabilizable

models with undetectable modes.

(J) Residual calculation of the form

r w IResiduallI (5.3)
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(k) Condition estimates for the Riccati problem derived in Chapter 4.

5.2 Algorithms and Software

Most of the algorithmic computations (i.e., those beyond matrix

algebra) performed in RICPACK employ proven stable algorithms coded

into reliable, portable FORTRAN software. Two sources for the software

are LINPACK [39] and EISPACK [401, [46]. Modified LINPACK software is
used for linear equation solving (the BLAS are replaced with in-line

.1' code), estimating the condition of a non-diagonal cost matrix R,

solving the system XVII - V2 1 and in estimating the condition of V11 .

The LINPACK singular value decomposition (SVD) is used in compressing

the (2n4i) x (2n4m) pencil when necessary. EISPACK-type QZ software is

used for performing the QZ transformation and generalized eigenvalue

calculations. Other EISPACK software is used in calculating the

coordinate balancing [43], [45] transformation, in addition to software

based on the Bartels-Stewart algorithm [47] for Lyapunov equations.

The Bartels-Stewart based software is also used in condition estimation

*and Newton's iteration calculations. Ward's [421 software is used for

the eigenproblem balancing, and Van Dooren's software [44] is used for

ordering the transformed pencil. A description of each subroutine used

4. is given in the Appendix.

5.3 Numerical Examples

The following simple continuous-time example was used to illus-

trate the numerical properties of RICPACK when stabilizability is the

key factor:
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Example I

-[0 -2 x + [Fj u
y- [I lIx (5.4)

f-(YTY
minimize 0(yy + u u)dt (5.5)

This system is stabilizable for e * 0 and completely reconstructible.

The applicable ARE is

ATX + XA - XBBTX + CTC = 0 . (5.6)

The "true" solution for X can be hand calculated for comparison pur-

poses as

e2  2+r
X 2 > 0 . (5.7)

2+/.62" 4 4(2/ )2

Note that as e*0 the system approaches unstabilizability and the (1,1)

element of X tends to infinity.

The solution to this problem was numerically computed on a DEC

KL-10 (under TOPS-20) in double precision using RICPACK. The machine

precision is near 10- 18 in this case. The results of interest are

summarized in Table 5.2. The only measure of condition included in the

table is the condition of V11 with respect to inversion because the

other measures did not give an indication that the solution accuracy

was degenerating as e+0. We note here that the data in Table 5.2 and

the succeeding tables that are expressed as a power of 10 are rounded

to the nearest power of 10.
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TABLE 5.2

Numerical Results for Example 1, e =0 -N

r Newton r

N c(V1I) (5.3) Ace* iterations (5.3) Ace*

0 100 108 17 - - -

2 0 1O1 1 - - -

4 108 I0- 10  10 2 10- 18  17

6 1012 10-8 6 3 10-20 17

8 101 1o-2 2 4 10- 3' 17

S 1018 101 0 6 10-1  17

10 1020 100 0 - - -

The following data includes Ward balancing effects

0 100 10- 18 17 -

" 5 107  10- 15  15 - - -

10 1012 10- 9  9 2 10- 18 17

11 1016 10-7  7 3 0 17

12 1017 10- 7  7 3 0 17

13 1017 10- 6  7 3 10- 18 17

14 sing. 101 0 - - -

*Accuracy in correct significant digits.

Some useful observations can be made on this data. One can see

that for this example, K(VIj) and the residual (r) are both good

indicators of the numerical accuracy. Since machine precision is near

0-18, one would expect about 17 correct digits for a well-conditioned

problem (which is the case for e-1). The data indicates that one digit
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V.'+ of accuracy is lost for each power of 10 change in K(V 11 ) and r. This

is desirable behavior of a condition estimate. Note that Ward

balancing improves the condition of V11 and reduces the value of r for

the same value of e. Ward balancing enables solution calculation for

smaller values of e, but the accuracy is not as smooth a function of

oc(V11 ). However, the residual is still a good indicator of accuracy.

Note that in all cases with a reasonable starting guess a few itera-

tions of Newton's method restores full accuracy. The generalized

eigenvalue solution was used as a starting guess and was considered

reasonable if K(Vjj) < 1./(machine precision). When this condition was

not satisfied, the Newton iteration failed to converge to the desired

solution.

The above example illustrates that stabilizability of the model

does indeed influence the numerical accuracy of the Riccati solution.

-Also, K(V 1 1 ) and r are good indicators of solution accuracy as the

model approaches unstabilizability. However, K(VIl) may not be a good

indicator in other situations as the following example will show:

Example 2 1 - 0 0 1

-1 XCO0 01 X + I U

y [I 1 1 ]x (5.8)y-T

minimize do (y Ty + u Tu)dt (5.9)
0

The model is completely controllable and observable. The open-loop

poles are at e ±j, and the applicable ARE is
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ATX + XA - XBBTX + CTc - 0, (5.10)

The solution to this problem was numerically computed on a UNIVAC

1100/83 in double precision using RICPACK. The machine precision is

near 10-18 in this case. The results of interest are summarized in

Table 5.3. Although an exact hand solution was not possible in this

case, the behavior of the residual can be used to judge the solution

accuracy. This example was designed to assess the effect of the

separation of the closed-loop spectrum on solution accuracy and the

ability of condition estimates to detect degrading accuracy. The

column CLP in Table 5.3 indicates the position (real part) of the

closed-loop pole nearest the imaginary axis in the complex plane.

TABLE 5.3

Numerical Results for Example 2, e - 10- N

A c(X) KB(X) r Newton r
N CLP K(Vll) (4.18) (4.4) (5.3) iterations (5.3)

0 100 101 100 102 10- 16  1 10- 16

3 10- 6  100 106 I07 10- 12 1 10 - 14

5 10-10  00 10 10 - 8

7 10- 14 100 1018 1015 10- 8 2 10- 16

8 10- 1 6  100  1016 1017  10-I 2 10- 16

9 10- 1 8  00  1018 1018 10- 1  - -

One can see from this example that K(VII) provides no indication
of loss of accuracy in the solution. However, in this example cAc(X)

and cB(X) correlate directly with the behavior of the residual, and

thus, the solution accuracy. Ward balancing of the eigenproblem had no
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noticeable effect on solution accuracy for a given value of e. Newton

iterations did significantly improve solution accuracy, as measured by

the residual, until the condition cAc(X) - KB(X) - 1./(machine

precision). At this point, the iterations failed to converge to the

desired solution, as was the case in example 1.

This example shows that separation of the closed-loop spectrum

does indeed influence the numerical accuracy of the Riccati solution

and that the condition estimates in which separation is a factor

provide good indicators of solution degeneracy.

The following example illustrates the effect of ill-conditioning

of the R weighting matrix, with respect to inversion, on the numerical

solution for the continuous-time case. Recall that ill-conditioning of

R is not necessarily a problem in the discrete-time case since its

inverse is not explicitly required.

Example 3

; -.02 x + 01 .0] u

[io. oo.](5.11)
y - [10. 100.]x (.1

minimize f0 (yTy + uT u)dt (5.12)
0 1

The system is completely controllable and observable. As e O, the R

* matrix approaches singularity. The applicable ARE is

ATX + XA - xBt -.. BTx + cTc - o . (5.13)
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,... The solution to this problem was numerically computed on a UNIVAC

% '1100/83 in double precision using RICPACK. The machine precision is

near 10- 18 in this case. The results of interest are summarized in

Tables 5.4 and 5.5. Ward balancing was employed in the calculations

for Table 5.4, and coordinate balancing was employed for Table 5.5.

Results of calculations where no balancing was applied were nearly

identical to those of Table 5.5 for coordinate balancing.

TABLE 5.4

Numerical Results for Example 3, Ward Balancing, -I0-N

A N K(R) K(Vl1 ) cA (X) B(X) r Newton r
(4.18) (4.4) (5.3) iterations (5.3)

o I01 101 100  102 10- 17  110
- 17

2 10 107 102 i0 I0- 17  1 10-17

4 I0 103  103  l00 10-1 4 2 10- 14

6 106 I04  I03  ioll i0- 12  10 10- 12

8 108 105  103 1013 i0-10  10 10- 10

10 loll 101 103  105 10- 8  10 10- 8

12 1012 107  103  1017 10-6 10 10- 8

14 1014 108  103  1019 10- 5  10 10- 5

16 1016 109  101 I0 1  10- 1 10 10- 3
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TABLE 5.5

Numerical Results for Example 3, System Balancing, -1O-N

N K(R) K(Vjj) KA(X) B(X) r Newton r

(4.18) (4.4) (5.3) iterations (5.3)

0 101 103  100  103  lO- 15 2 10- 17

2 102 103  102 10 6  i0-I5 2 10-17

4 10e 103  103  109 10- 12  7 10- 14

6 106 103 10 1011. 10-12 10 1 2

8 lop 103 103  1013 10- 9  10 10-11

10 1010 103 103 1015 10-6 10 10- 9

12 1012 103 103 1017 10- 6  
6

14 1014 '  103 103 1019 10- 2  1010 -4

16 1016 103 103 102l1I0- 1  10 10- 2

The data in Table 5.4 indicate that K(R) with respect to inversion

accurately reflects the behavior of the residual. Also, K(Vll) with

respect to inversion is too optimistic in its estimation of the problem

.4 condition and cB(X) is too pessimistic. KAC(X) provides no informa-

tion in this case. A maximum of 10 Newton iterations was allowed, and

where 10 appears in the table, convergence did not occur. The value

* for the residual in that case is the residual associated with the

solution at the tenth iteration. One can see that the ill-conditioning

of R begins to dominate the numerical accuracy when c(R) > 106. Since

'iR i 1  is involved in the Newton iteration calculations, iterative

Improvement does not improve accuracy when K(R) dominates. The

a- 77

is'



a;.'.M W: 7 D. .. -.p. P 17 . . P-* -. PP * *

N1C TP 6521

convergence criteria used for the Newton Iterations do not recognize

this fact and stop the iterations.

The data in Table5.5 are essentially the same as that in Table 5.4

except for one important aspect. i(Vll) with respect to inversion

provides no information on the problem conditioning once K(R) > K(V 1 ).

This may indicate that Ward balancing will cause other sources of

problem ill-conditioning, beside unstabilizability of the model and

singularity of E, to be reflected in K(VI1).

The preceding examples illustrate that none of the potential

measures of conditioning are reliable indicators by themselves.

However, numerical experience to date has shown that in all cases at

least one of the measures will detect the degeneracy of numerical

-: accuracy as it occurs.
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CHAPTER 6

SECOND-ORDER MODELS

The behavior of many physical systems in engineering can be

modeled by the following system of equations:

Mi(t) + (D + G)x(t) + Kx(t) - f(t) (6.1)

where x,f e Rn and M,D,G and K e Rnx n .  Moreover, in describing

physical systems one can make the following assumptions without loss of

generality:

M - MT > 0, generalized capacitive storage (6.2)

D - DT > 0, generalized energy dissipators

G - -GT, generalized conservative elements

K - KT > 0, generalized inductive storage.

The model (6.1) can describe electrical, mechanical, thermal, and other

systems by appropriate choice of "through" variables, f(current in

electrical systems, force in mechanical systems, etc.) and "across"

variables, x(voltage, displacement, etc.) [48]. Analogies exist among

the various types of systems.

The model (6.1) can result directly from lumped parameter models,

or finite approximations to distributed parameter systems described by

partial differential equations. One large class of systems of' current

importance are large space structures (LSS), which are large distribu-

ted parameter systems that are most often discretized by the finite

element method into the form (6.1) (49]. The problem of controlling

LSS motivated the studies of this chapter, although the results are

applicable to any system described by (6.1). The first section defines
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the LSS framework and explores the inherent structure of (6.1) and

(6.2) that might be computationally exploitable. The second section

considers specifically the solution of the GARE associated with second-

order models. In the third section, criteria are discussed for the

determination of controllability, stabilizability, observability or

detectability of (6.1).

6.1 Second-Order-Model Structure in the LSS Framework

In the LSS framework, x is a displacement vector, f is a force

vector, H is the mass matrix, K is the stiffness matrix, D is the

damping matrix, and the G matrix gives rise to gyroscopic forces. In

general, n is initially of very high order and the aforementioned

matrices may be sparse. The force vector f is of the form

f(t) - Fu(t) (6.3)

.1 where u Rm is the control input, and F e Rn x m is the input mat-

rix. One usually considers an output equation of the form

y(t) - Px(t) + VVt)

where (6.4)

y e Rr and P, V c Rrxn

The traditional method for dealing with models of the form (6.1)

is to transform to the equivalent standard matrix first-order (state

variable) form

1(t) - Az(t) + Bu(t) (6.5)
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where z - [;]is the state of dimension 2n. That is, the model (6.1)

would be transformed to the following

;(t) 0 1 X(t) 0r + u(t) . (6.6)

L t) L K _W-I¢ G J

Unfortunately, this procedure, although it is conceptually simple,

faces practical computational drawbacks. First, the symmetry, defin-

iteness and sparsity structure of the M, D, G and K matrices are not

exploited. In general, M-1 K and M-K(D+G) are not symmetric and are

dense even though M, D, G and K are symmetric and sparse. Moreover, if

M is nearly singular, then H- may be computationally ill-determined.

Consider the following generalized first-order realization of

(6.1), (6.3), and (6.4):L:o :i[:i +[_oI+ + u

y [P V] (6.7)

Pre-multiplying (6.7) by[O 0j
1 yields the "standard" first-order model

(6.6). System (6.7) is of the generalized first-order form

Ez - Az + Bu

y - Cz (6.8)

by appropriate definition of z, A, B, C and E.
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Other first-order realizations of this form which are of potential

interest include:

MDG -[K 0] z+[F] u (6.10)
M 0 0 M 0

S [+ ] u (6.11)

Note that (6.9) and (6.11) have symetric E and A matrices wen G - 0,

while (6.1) has skew-symmetric E and symetric A when D - 0. These

properties are computationally advantageous In the problem in the

remainder of this chapter.

6.2 The GAR for Second-Order Models

Consider the model (6.7), (6.4) in the context of the continuous-

time optimal regulator problem of section 2.3.1 and let D - D+G. The

GARE for this problem from (2.30) is

I ITO- [ X [ _1 + [ ]_ X [ ]+ vT] Q[P V]

-, ] X [o]-oFT) X[1 ] (6.12)

and the optimal control law is given by-- ,r
If one solves the 2n x 2n GARE (6.12) employing the method of section

2.3, then one is faced with a 4n x 4n generalized eigenproblem. Clearly,

we this is undesirable if n is itself a large number.
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Instead we expand X - XT > 0 into mm blocks as [50]

r [ I > 0, w wT  > _, +W - Y, Z - YTW+Y > 0. (6.14)
YT Z11

Substituting (6.14) into (6.12) and maltiplying out yields the follow-

ing three equations

0 . _ YK _ KYT _ yI-IFTyT + pTQp (6.15)

0 = -MZD - TzM - MZFR-1FTZ + vTQv+MYT +Y (6.16)

0 m W - YU - KZM - YFRI1FTZH + PTQV (6.17)

We see that (6.15) is an nxn Riccati-type equation from which Y could

be obtained. Once Y is determined, (6.16) becomes an nxn GARE from

which we can solve for Z. Equation (6.17) then simply defines W.

If only the feedback (6.13) is desired, we see (by substituting
4'..

(6.14) into (6.13) and expanding) that

uO = -RlFT(YTx + ZMi) . (6.18)

Therefore, one need not solve (6.17) for W.

It is computationally advantageous to only require the solution of

two nxn Riccati equations rather than one 2n x 2n Riccati equation,

since the solution of an NxN Riccati equation takes O(N3 ) operations.

To realize even greater computational advantage, we consider two common

special cases. First, we consider the case when there is no damping or

gyroscopic forces, i.e., D 0 0. One can see that (6.16) is then no

longer a GARE; it reduces to a simpler quadratic equation.
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Next, consider the velocity output case, i.e., P 0 0. Then, a

solution for (6.15) is Y - 0. One can solve the GARE (6.16) for Z and

the optimal control becomes

- R FTZM; (6.19)

Obviously, solving one nxn GARE is computationally simpler than solving

a 2n x 2n GARE regardless of the size of n. Based on these results, we

can state the following theorem.

Theorem 6.1: Given the system

H i (t) + 5 ;(t) + K x(t) - F u(t) (6.20)

with output

y(t) - VI(t) (6.21)

and criterion

J - fo'(yT y + uTRu)dt. (6.22)

Then the unique stabilizing control which minimizes (6.22) is given by

u0 (t) - -R- 1FTZM;(t) (6.23)

where Z - ZT > 0 satisfies the GARE

0 = - MZD - DZH - MZFR-1FTZM + VTQV . (6.24)

Proof: The theorem is a restatement of the results of this section.

6.3 Controllability and Observability Criteria for Second-Order Models

We now seek to establish controllability and observability cri-

teria for the model (6.1), (6.3) and (6.4). Controllability and

observability of this model have been shown to provide important

insights into modal behavior of the system and to furnish information
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on the number and positioning of sensors and actuators [51], [52].

Also, controllability and observability information can be used in

determining which modes to retain when performing model reduction [53].

% One could apply the traditional methods for determining control-

lability and observability to the transformed first-order model (6.6)

with state dimensions 2n. Unfortunately, the resulting standard tests

(cast in terms of a 2n-th order "A" matrix) do not take advantage of

the symmetry, definiteness and sparsity structure of the matrices H, D,

G, and K. Also, computational problems may exist if H is near singular

or n is very large.

Other conditions have been derived by Hughes and Skelton [51],

which exploit the specialized structure of (6.1) and (6.2) for the

cases D - 0 and D+G - 0. However, these conditions could suffer from

computational difficulties since they require knowledge of the full

modal transformation matrix, whose columns are the eigenvectors corre-

sponding to the eigenvalues X of the generalized eigenproblem

[XM + Kjx - 0 (6.25)

where +X1/2 is the modal frequencies. An equivalent form of (6.25)

is the simple eigenproblem

-M-'gx Xx (6.26)

since M is nonsingular. But this form is computationally undesirable

for the reasons already mentioned. In addition, computation of the0.'

eigenvectors of (6.25) and (6.26) is ill-conditioned whenever the X is

repeated or nearly equal [15], which is often the case in LSS.

85

.4. ' ' ,%, %, , ,'', . . , ,. , . .. , ,.., .- ;. . ., . ,. , ., ,,,:,- % , , ._ .,,

...4. . ." . . . " -'d . M l la nmlidl~l t ,dmm. ldmm um d, m



NWC TP 6521

The remainder of this section focuses on conditions for controlla-

bility (or, more generally, stabilizability) and observability (or,

more generally, detectability) which take advantage of the structure of

(6.1) and (6.2), but extend the results of [51] and are computationally

more tractable. Most of the computational attractiveness of the new

criteria accrue from the fact that an initial modal transformation is

not necessary. Thus, if just a few "important" modes are known--and

there exist techniques to determine just selected modes, e.g., [541,

[55-these modes can be tested for, say controllability, by a test

involving just the model matrices H, D, G, K,and F.

. 'a Definition 6.1:

S:= {X' : Xi is a generalized eigenvalue of the problem

[ [ ] (6.27)

:= Imodes of the system (6.7)}

Also, Q+ :- {e a : Re X > 01 (6.28)

Sj- IX e 9 : Re X < Of (6.29)

For M nonsingular there are 2n modes, and n+ and Q- are the sets of

the unstable and stable modes, respectively. Alternatively, a can be

determined in terms of the generalizdd eigenvalue problems

-K D+G (6.30)

-K 01 - X H0
0 X D+ (6.31)

L0 -1 - 01
0 - K -(DXK 0 1 (6.32)

• K -G L 0 K i
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whichever yields the greatest computational advantage. Computation of

eigenvalues for problems of the form (6.32) is discussed in [54] for

the case G - 0.

Theorem 6.2: (Hautus [56]) The system

Ax + Bu ; x(t) R (6.33)

is

a) Controllable (stabilizable) if and only if

rank [A - XI, B] - n; for all X c A(A) (A+(A)) (6.34)

b) Observable (detectable) if and only if

rank [A C ] - n ; for all X c A(A) (A+(A)), (6.35)

where A(A) :[ (X: (A- XI)x - 0, x*O}

:= Spectrum of A (6.36)

Proof: [561

Clearly then, the system (6.8) with E nonsingular is controllable

(stabilizable) if and only if

rank [A - XE, B] - 2n for all X e A(E-A) (A+(E-A)) (6.37)

and observable (detectable) if and only if

rank - 2n for all X • A(E-A) (A+(E-A)) (6.38)
ran A - XE]

* We now exploit the structure of A, B, C to derive controllability,

*i etc., criteria directly in term of M, D, G, K, F, P, and V.

Theorem 6.3: The system (6.1), k6.3) is controllable (ptabilizable) if

and only if

rank [A2M + A(D+G) + K, F] = n; for all A e $2 (n+) (6.39)
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Proof: By Theorem 6.2,the system (6.1), (6.3) is controllable (stabil-

izable) if and only if

2n =rank [A - XE, B]; for all X e 9 (0+)

= rank [-' - M O] from (6.7) and (6.8)

r XM+D+G I " I 0 -Ir -K -D-G-XM F 1

01

- rank [,22M+(D-G)+K 0

Clearly this obtains if and only if

rank [X2 M+R(D+G)+K, F] - n for all A c OW).

Note that A is a scalar, so that sparsity in the problem is preserved.

Also, no inverses and no initial transformations are necessary.

Finally, note that each mode of the system can be checked individually

without transforming the system to modal coordinates.

Theorem 6.4: The system (6.1), (6.4) is observable (detectable) if and

only if

)V+P
rank L - n for all A e l (Q+). (6.40)

I) 2 -+A(D+4)+K]

Proof: By Theorem 6.2 the system (6.1), (6.4) is observable (detect-

able) if and only if
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VC

2n rank for all cfl (Ire )

-rank I I from (6.7) and (6.8)

[ -D-4-I'P V
4 V

rank -XM-D-G I Iran 
-D-G- A IOi

AV+P 01[~ L H Ai r a n k 2 4 X ( + ) +
Clearly, this obtains if and only if[ )V+P 1

rank J - n for all X a (n .A,2N+A (D+G).+K

Note that an alternative proof of Theorems 6.3 and 6.4 is to observe

that the results are essentially restatements of the spectral criteria

for left or right coprimeness of the appropriate polynomial matrices

(quadratic, in this case). However, we have exploited here the numer-

ically useful characterization of SI in Definition 6.1, and the proofs

are direct and require no polynomial matrix theory. Several special

cases of Theorems 6.3 and 6.4 are of interest in many systems and are

now stated as corollaries.

Corollary 6.3.1: When D+G - 0 (i.e., no damping or gyroscopic forces),

the system (6.1), (6.3) is controllable if and only if

rank [-w M+K, F] - n ; i - 1,...,n (6.41)

where w i ; /Xi c n(M- 1 K) (Note: Xi 0).

Proof: When D+G - 0

- ±jw1  ;
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and (6.41) follows directly from Theorem 6.3.

C. ~Corollary 6.3.2: When D+G - 0 and the system (6.1), (6.3) is in modal

form, then (6.1), (6.3) is controllable if and only if

rank F - n ; (r - 1,...,R) (6.42)
_f ,r r

where Fr are partitioned rows of the modally transformed F matrix

corresponding to the .ultiplicities ni of the wj; nj + ... + nR -

n, and R is the number of distinct wi. This is Theorem I of [51].

Proof: In modal form

IM - I, K - diag[W 1
2 ,...W 2 ], Fn = modally transformed F mat-

rix. Then (6.42) follows directly from Corollary 6.3.1.

Corollary 6.3.3: When K - 0 the system (6.1), (6.3) is controllable if

and only if rank F - n.

Proof: When K - 0, 1 - 0 e Q and the corollary follows directly from

Theorem 6.3.

Similarly, we can state

Sa oyCorollary 6.4.1: When D+G - 0 the system (6.1), (6.4) is observable if

and only if

rank = - n ; I = I,...,n. (6.43)
I-u2 M+KI

Proof: This result follows directly from the proof of Corollary 6.3.1

and Theorem 6.4.

Corollary 6.4.2: When D+G - 0 and V - 0 (i.e., no rate feedback) the

system (6.1), (6.4) is observable if and only if
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N } rank [=~+K n; I 1 ...,n. (6.44)

Proof: Follows directly from Corollary 6.4.1.

Corollary 6.4.3: When D+G - 0 and the system (6.1), (6.4) is in modal

form, then (6.1), (6.4) is observable if and only if

rank[jiV+P] - nr; (r- 1,..., R) (6.45)

where [JwiVr + Pr] are the suitably partitioned columns of the

modally transformed [JwiV + P] matrix.

' Proof: In modal form M - I, K - diag[(d2 ""'w2]' [jw V + P] - mdally
1 n I

transformed [JwiV + P] matrix and (6.45) follows directly from

(6.43).

Corollary 6.4.4: When D4G - 0, the system (6.1), (6.4) is in modal

, form, and V - 0 then (6.1), (6.4) is observable if and only if

rank P M n ; (r - 1,...,R). (6.46)r r

Proof: Follows directly from Corollary 6.4.3

Corollary 6.4.5: When K - 0 the system (6.1), (6.4) is observable if

and only if rank P - n.

Proof: Set wi - 0 and K = 0 in (6.43).

Note that the above Corollaries have obvious analogues in termb of

stabilizability and detectability, as appropriate.

9
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CHAPTER 7

CONCLUSION

We have examined some numerical issues regarding the solution of a

very general form of the algebraic Riccati equation in both the contin-

uous- and discrete-time formulations. These generalized equations

resulted from control and filtering problems for systems in generalized

state space form with performance criteria that included cross-coupling

between the state and input. The basic solution method considered was

the Schur technique. The Schur technique was preferred because of its

good numerical properties, especially when some closed-loop-system

eigenvalues were closely spaced. The generalized eigenproblem frame-

work employed allows solutions when E and R are ill-conditioned with

respect to inversion without undue influence of the ill-conditioning on

the solution process. Singular R matrices were permissible in the

discrete-time case.

A Newton-type iterative refinement procedure for the Riccati

solution was derived. In the most general case, it required solution

of a Sylvester equation at each iteration. Numerical results indicated

that the iterative refinement improved numerical accuracy significantly

in all cases where accuracy was lost due to ill-conditioning of the

Riccati problem except when R was ill-conditioned with respect to

inversion in the continuous-time problem. Lack of improvement in this

case was attributed to the fact that the iterative procedure required

R-1 explicitly at each iteration.
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Condition estimates for the Riccati problem were examined. New

condition estimates were also derived. The behavior of these estimates

and their ability to detect degraded accuracy of the Riccati solution

were evaluated in numerical examples. All numerical examples employed

the software package RICPACK for the solution of the Riccati equation.

RICPACK was developed as a research tool to aid in the study of numeri-

cal issues related to the solution of algebraic Riccati equations. It

was found that no single condition measure considered herein would

reliably reflect the accuracy of the Riccati solution in all cases.

However, ill -conditioning was always detected by at least one of them.

The special structure of linear system models in second-order form

was considered. Computational advantage was sought in solving Riccati

equations related to these models. Special computational advantage was

realized in the velocity feedback control problem. Controllability and

observability tests for second-order models were derived directly in

terms of the system model matrices. These tests had the additional

advantage of enabling one to test individual model modes.

Some topics of continuing research in these areas will include:

1. Iterative refinement procedure in the coatinuo,,s-time formula-

tion that does not require explicit inversion of the R matrix.

2. Further development of condition estimates for the Riccati

problem, especially for the case E * I and considering other

forms for the perturbation 6F.
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3. Further exploitation of the special structure of mdels in

second-order form in all types of control and filtering compu-

tations.

We note here that all further research in the area of numerically

solving algebraic Riccati equations can benefit from the availability

of RICPACK.

,
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The purpose of this appendix is to provide more detailed informa-

tion on the software package RICPACK than is appropriate for the main

body of the thesis. However, it is not a complete documentation

package for RICPACK. First there will be a discussion of the hierarchy

of the software routines employed in the package. Then a sample

terminal session for a particular example problem is illustrated.

Finally, some appropriate software listings are included.

Figure A.1 illustrates the hierarchy of the software routines.

That is, the routines on the upper levels employ the routines of the

lower levels. At the lowest level we have the basic matrix manipula-

tion routines like add, subtract, multiply, etc., and some simple

combinations of these basic operations. The next level consists of

standard routines for linear equations, eigenvalues and singular value

decomposition (SVD). Most routines in this level are from LINPACK or

EISPACK, or are slight modifications to routines from LINPACK and

EISPACK. Subroutines that are modified have the modifications noted in

. the comment documentation included in the subroutine. A list of the

Level 0 and I routines is given in Table A.I. The SVD routine is

listed separately with the BLAS routines that it requires from LINPACK,

as it is the only routine to require the BLAS and could be modified to

eliminate said BLAS. No further documentation of these routines is

provided in this appendix.
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TABLE A.1

Subroutine List for Levels 0 and 1

level 0 level 1 DSVDC

BCORBK EALANC HLINEQ DAXPY

DlINRM ORTEES DDOT

MADD DGECOM ORTRAN DtIRM2

IHUA DGEFAM QZHESW DROT

*.MOUT DGESLM QZITN DROTG

MQF QZVAL DSCAL

MQFWO DSTSLV REBAKB DSWAP

MSCALE ELMHES REDUCE

NEUB GIV REDIJC2

MULA GR.ADBK ROTC

MULE GRADEQ ROTR

MULWOA HQR SCALBK

I4ULWOB RQRORT SCALEG

PERI4UT IHTQL2 SYMSLV

SAVE LINEQ TRED2

SEQUIV

4 TRNATA

-~ TRNATB
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Subroutines at Levels 2 and 3 perform more specialized tasks. The

task title is given in Figure A.1, and the main subroutine performing

the task is shown in parenthesis. The major comment documentation from

these main subroutines, as it appears in the software, is given in this

appendix. This documentation can be consulted for more details on the

purpose of each routine, or for a list of subroutines that each of

these main subroutines may call.

-, Of course, the main driver program is at the highest level (4), and

a complete listing is provided. This ain program would be rewritten,

or at least extensively modified for most applications. This driver

was written as a research tool and as such performs calculations not

relevant to many analysis and design applications. A higher level

language would be more appropriate to interface the Level 0 through

Level 3 subroutines with a larger CACSD package and perform the neces-

sary input and output.

A sample output listing from an actual terminal session to solve

one particular problem is given in Figure A.2. The problem is Example

1, unbalanced case, for e - .0001. The session illustrates most of the

features and options of RICPACK. The computer prompt for data is the

"Y" sign. The listing is self-explanatory and will not be elaborated

further.

The main program listing and heading documentation comment list-

ings for the main subroutines of Levels 2 and 3 follow Figure A.2.
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@XQT RICPACK.

GENERALIZED ALGEBRAIC MATRIX RICCATI EQUATION SOLVER

ENTER SYSTEM ORDER'N; = FOR CONTINUOUS TIME PROBLEMS, - FOR DISCRETE
MAXIMUM ORDER = 20

>2

N= 2

ENTER NUMBER OF SYSTEM INPUTS 'M'
AND NUMBER OF SYSTEM OUTPUTS 'L'

i >1.1

M= 1 L= 1

ENTER FLAG FOR DESIRED SOLUTION:
-1 FOR STABILIZING SOLUTION
0 FOR ANY SOLUTION
+ 1 FOR DESTABILIZING SOLUTION

B >-1,,

lORD = -1

ENTER BALANCING FLAG: 0 FOR WARD BALANCING
I FOR CO-ORDINATE BALANCING
2 FOR NO BALANCING

>2

IBAL = 2

NO BALANCING ATTEMPTED

DO YOU WISH TO ITERATE FOR ROBUSTNESS RECOVERY (Y OR N)

KFLAG = N

DO YOU WISH TO ENTER AN ME° MATRIX (Y OR N)
DEFAULT IS E = IDENTITY MATRIX

FIGURE A.2 Sample terminal session output listing.
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>N

EFLAG = N

USING DEFAULT: E = IDENTITY

ENTER THE 2 X 2 SYSTEM MATRIX "Ag BY ROWS

>1,0
>0,-2

THE "A' MATRIX IS:

1.00000000000000000 .000000000000000000
.000000000000000000 -2.00000000000000000

ENTER THE 2 X 1 INPUT MATRIX "BN BY ROWS

>.0001
>0

THE 'B" MATRIX IS:
.100000000000000000-003
.000000000000000000

ENTER THE I X 2 OUTPUT MATRIX OCO BY ROWS

>1,1

THE *C' MATRIX IS:

1.00000000000000000 1.00000000000000000

DO YOU WISH TO ENTER A CONTROL WEIGHTING MATRIX "R" (Y OR N)

DEFAULT IS R = IDENTITY MATRIX

>N

RFLAG = N

USING DEFAULT: R = IDENTITY

DO YOU WISH TO ENTER AN OUTPUT WEIGHTING MATRIX -Q- (Y OR N)

FIGURE A.2 Sample terminal session output listing (continued).
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QFLAG= N

USING DEFAULT: Q = IDENTITY

DO YOU WISH TO ENTER A STATE/INPUT CROSS-WEIGHTING MATRIX -S- (Y OR N)
DEFAULT IS S = ZERO MATRIX

>N

SFLAG = N

USING DEFAULT: *So = ZERO MATRIX

THE CLOSED LOCP EIGENVALUES FOR THE STABILIZING RICCATI SOLUTION ARE:

(FOR CONTINUOUS TIME)

-1.00000000000000000 .00000000000000000
-2.00000000000000000 .000000000000000000

THE STABILIZING RICCATI SOLUTION IS:

200000000.512931183 .333333332798460259

.333333332871560127 .249999999722222220

X1N = .20000000+001 H!N = .20000000+001 K(Z11) = .19402850+009

KB(X) = .30000000 + 001 KA(X) = .50000000-008
SEPEST = .20000000 + 001 SEP = .20000000 + 001

DO YOU WISH A RESIDUAL CALCULATION (Y OR N)

>y

RSFLG = Y

RESIDUAL 1-NORM/SOLUTION 1-NORM = .12§311838731697373-009

DO YOU WANT TO SEE THE RESIDUAL MATRIX (Y OR N)

>Y

RMFLG = Y

FIGURE A.2 Sample terminal session output listing (continued).
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THE RESIDUAL MATRIX, BY ROWS:

-.258623678237199783-001 -.320515168225621316-010
-.320515168225621316-010 .789603050697242101-017

DO YOU WANT TO TRY ITERATIVE IMPROVEMENT (Y OR N)

>Y

NFLAG = Y

ENTER MAXIMUM NUMBER OF NEWTON ITERATIONS

>5

MAX. NO. OF ITERATIONS = S

CONVERGED AFTER 2 ITERATIONS OF NEWTONS METHOD

CONVERGENCE CRITERIA 1

THE REFINED STABILIZING SOLUTION IS:

200000000.499999999 .333333332777777778
.333333332777777778 .249999999722222223

THE CLOSED LOOP EIGENVALUES FOR THE STABILIZING RICCATI SOLUTION ARE:

-1.00000000499999998 .000000000000000000
-2.00000000000000000 .000000000000000000

RESIDUAL 1-NORM/SOLUTION 1-NORM = .465661286234845640-017

DO YOU WANT TO SEE THE RESIDUAL MATRIX (Y OR N)

>Y

RMFLG = Y

THE RESIDUAL MATRIX, BY ROWS:

.931322574615478S16-009 .867361737988403547-018

.173472347597680709-017 -.237442714890844994-017

THE GAIN MATRIX IS:

20000.0000499999998 .333333332777777779-004
FIGURE A.2 Sample terminal session output listing (coneinued).
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c THIS IS AN INTERACTIVE MAIN DRIVER PROGRAM FOR THE SOFTWARE
C PACKAGE RICPACK. T.!IS DRIVER IS FOR SOLVING THE CONTINUOUS-
C TIME OR DISCRETE-TIME GENERALIZED OPTIMAL REGULATOR PROBLEM.
C THE PROGRAM PROMPTS FOR ALL NECESSARY INPUT. FOR THE PROBLEM
C SPECIFICATIONS AND DETAILS ON THE SOLUTION METHOD, SEE
C
C REF.: ARNOLD, W.F., "ON THE NUMERICAL SOLUTION OF
C ALGEBRAIC MATRIX RICCATI EQUATIONS," PHD THESIS, USC,
,* DECEMBER 1983.
C
C HISTORY:
C THIS DRIVER WAS WRITTEN BY W.F. ARNOLD, NAVAL WEAPONS CENTER,
C CODE 35104, CHINA LAKE, CA 93555, AS PART OF THE SOFTWARE
C PACKAGE RICPACK, SEPTEMBER 1983.
C

' C SUBROUTINES CALLED:
C BALANC. BALCOR, BCORBK, CMPRS, ELMHES, FBGAIN, HQR, LYPCND,
C MADD, MLINEQ, MOUT, MQFWO, MSCALE, MSUB, MULB, NEWT, RESID,
C RICSOL, RINV, SAVE, SEPEST, SEQUIV, TRNATB
C
C *****FUNCTION SUBPROGRAMS:

DOUBLE PRECISION DINRM
INTEGER IND(40),I,IBAL,INFO, IORD, J, L, Li, L2. L3, M, MAXIT,

X N, NN, NNPI, NNPJ, NNPM, NOUT, NPI, NPJ, NP1, NR, NRD, NRT
CHARACTER CFLAG, EFLAG, KFLAG, NFLAG, QFLAG, RDFLG, RFLAG,

X RMFLG, RSFLG, SFLAG
DOUBLE PRECISION A(20, 20), AS(20, 20), B(20, 20), C(20, 20),
X CQC(20, 20), E(20, 20), F(40, 40), G(40, 40), Q(20, 20),
X R(20, 20), RS(20, 20), S(20, 20), U(60, 60), WK(60, 20),
X Z(40, 40), ALFI(40), ALFR(40), BETA(60), CPERM(40),
X CSCALE(40), CA, CB, CLT1N, CLIN, COND, CIN, DG, DGI, DGN,
X RSD, RTOL, SEP, SR, TEMP, X1N
LOGICAL TYPE
DATA NR, NRD, NRT / 20, 40, 60 /
RTOL = 1.OD + 06
INFO = 0
NOUT = 6
TYPE = .TRUE.
CFLAG = 'Y'
WRITE (NOUT, 800) NR

C
C READ IN PROBLEM PARAMETERS
C

READ (5, *) N
WRITE (NOUT, 802) N
IF (N.GT.0) GOTO 10
TYPE z .FALSE.
N z-N

10 CONTINUE
IF (N.LE.NR .AND. N.NE.0) GOTO 20
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WRITE (NOUT, 804)
STOP

20 CONTINUE
WRITE (NOUT, 806)
READ (5, 0) M, L
WRITE (NOUT, 808) M, L
IF (M.EQ.O) WRITE (NOUT, 810)
IF (L.NE.O) GOTO 30
WRITE (NOUT, 812)
STOP

30 CONTINUE
WRITE (NOUT, 814)
READ (5, *) IORD
WRITE (NOUT, 816) IORD
IF (M.EQ.0) IORD -

WRITE (NOUT, 818)
READ (5, 0) IBAL
WRITE (NOUT, 820) IBAL
IF (IBAL.NE.0 .AND. IBAL.NE.1) WRITE (NOUT, 822)
WRITE (NOUT, 824)
READ (5, 834) KFLAG
WRITE (NOUT, 826) KFLAG
IF (KFLAG.NE.'Y') GOTO 40
WRITE (NOUT, 828)
READ (5, 4) DGI
WRITE (NOUT, 830) DGI

40 CONTINUE
NN x2*N
NNPM = NN + M
IF (!BAL.EQ.1) GOTO 50

C
C READ IN PROBLEM MODEL MATRICES
C

WRITE (NOUT, 832)
READ (5, 834) EFLAG

4 WRITE (NOUT, 836) EFLAG
IF (EFLAG.EQ.'Y') GOTO 60

50 CONTINUE
WRITE (NOUT, 838)
GOTO 80

60 CONTINUE
WRITE (NOUT, 840) N, N
DO 70 1 = 1, N

READ (5, *) (E(I, J), J 1, N)
70 CONTINUE

WRITE (NOUT, 842)
CALL MOUT(NOUT, NR, N, N, E)

80 CONTINUE
WRITE (NOUT, 844) N, N
DO 90 I = 1, N
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READ (5, 0) (A(I, J), J 1 1, N)
90 CONTINUE

CALL SAVE(NR, NR, N, N, A, AS)
WRITE (NOUT, 846)
CALL MOUT(NOUT, NR, N, N, A)
IF (M.EQ.0) GOTO 110

WRITE (NOUT, 848) N, M
DO 100 1 -1, N

READ (5, *) (CB(I, J), J 1, M)
100 CONTINUE

WRITE (NOUT, 850)
CALL MOUT(NOUT, NR, N, M, B)

110 CONTINUE
WRITE (NOUT, 852) L, N
DO 120 I = 1, L

READ (5, 0) (C(I, J), J 1, N)
120 CONTINUE

WRITE (NOUT, 854)
CALL MOUT(NOUT, NR, L, N, C)
CALL SAVE(NR, NR, L, N, C, COC)
IF (M.EQ.0) GOTO 180
WRITE (NOUT, 856)
READ (5, 834) RFLAG
WRITE (NOUT, 858) RFLAG
IF (RFLAG.EQ.'Y') GOTO 130
WRITE (NOUT, 860)
GOTO 180

130 CONTINUE
WRITE (NOUT, 862)
READ (5, 834) RDFLG
WRITE (NOUT, 864) RDFLG
IF (RDFLG.NE.'Y') GOTO 160
WRITE (NOUT, 866) M
DO 150 J = 1, M

DO 140 1 = 1, M
R(I, J) = O.OPO

140 CONTINUE
150 CONTINUE

READ (5, *) (R(I, I), I = 1, M)
WRITE (NOUT, 868)
CALL MOUT(NOUT, NR, M, M, R)

GOTO 180 "
160 CONTINUE

WRITE (NOUT, 870) M, M
DO 170 I = 1, M

READ (5, 0) (R(I, J), J = 1, M)

170 CONTINUE
WRITE (NOUT, 868)
CALL MOUT(NOUT, NR, M, M, R)

180 CONTINUE

114

~ ~ .



NWC TP 6521

IF (KFLAG.EQ.'Y') GOTO 230
WRITE (MOUT, 872)
READ (5, 834) QFLAG
WRITE (NOUT, 874) QFLAG
IF (QFLAG.EQ2.Y') GOTO 190
WRITE (NOUT, 876)
GOTO 210

190 CONTINUE
WRITE (NOUT, 878) L, L
DO 200 I = 1, L

READ (5, *) (Q(I, J), J = 1, L)
200 CONTINUE

WRITE (NOUT, 880)
CALL MOUT(NOUT, NR, L, L, Q)

210 CONTINUE
C
C FORM THE MATRIX PRODUCT CT*Q*C AND STORE IN CQC
C

CALL TRNATB(NR, NRD, L, N, C, G)
IF (QFLAG.NE.'Y') GOTO 220
CALL MULB(NR, MR, L, L, N, Q, CQC, CPERM)

220 CONTINUE
CALL MULB(NRD, NR, N, L, N, G, CQC, CPERM)
GOTO 320

C
C FORM ROBUSTNESS RECOVERY TERM
C

230 CONTINUE
ITER = 1
WRITE (NOUT, 882)
READ (5, 834) QFLAG
WRITE (NOUT, 874) QFLAG
IF (QFLAG.EQ.'Y') GOTO 240
WRITE (NOUT, 884)
GOTO 260

240 CONTINUE
WRITE (NOUT, 886) N, N
DO 250 I = 1, N

READ (5, *) (Q(I, J), J = 1, N)
250 CONTINUE

WRITE (NOUT, 880)
CALL MOUT(NOUT, NR, N, N, Q)

260 CONTINUE
CALL TRNATB(NR, NRD, L, N, C, G)
CALL MULB(NRD, NR, N, L, N, G, CQC, CPERM)
CALL SAVE(MR, NRT, N, N, CQC, WK)
CALL MSCALE(NR, N, N, DGI, CQC)
DG z DGI
IF (QFLAG.EQ.'Y') GOTO 280
DO 270 I = 1, N
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CQC(I, I) CQC(I, I) + 1.ODO
270 CONTINUE

GOTO 290
280 CONTINUE

CALL MADD(NR, MR, MR, N, N, CQC, Q, CQC)
290 CONTINUE

DO 310 I = 1, N
DO 300 J =1, N

WK(J N, I) = WK(J, I)
300 CONTINUE
310 CONTINUE
320 CONTINUE

IF (M.EQ.0) GOTO 350
WRITE (NOUT, 888)
READ (5, 834) SFLAG
WRITE (NOUT, 890) SFLAG
IF (SFLAG.EQ.'Y') GOTO 330
WRITE (NOUT, 892)
GOTO 350

330 CONTINUE
WRITE (NOUT, 894) N, M
DO 340 I = 1, N

READ (5, 0) (S(I, J), J 1 1, M)
340 CONTINUE

WRITE (NOUT, 896)
CALL MOUT(NOUT, MR, N, M, S)

350 CONTINUE
C
C CALCULATE CO-ORDINATE BALANCING TRANSFORMATION IF REQUESTED
C

IF (IBAL.NE.1) GOTO 360
CALL BALCOR(NR, NRD, L, M, N, A, B, C, CQC, S, E, Q, Z, ALFI,
X ALFR, BETA, IND, INFO, SFLAG, TYPE)
IF (INFO.EQ.O) GOTO 360
WRITE (NOUT, 898)
IF (INFO.EQ.1) WRITE (NOUT, 900)
IF (INFO.EQ.-I) WRITE (NOUT, 902)
IF (INFO.EQ.-2) WRITE (NOUT, 904)
WRITE (NOUT, 906)
READ (5, 834) RSFLG
IF (RSFLG.NE.'Y') STOP
IBAL = 0

360 CONTINUE
C
C TAKE INVERSE OF R MATRIX AND STORE IN Q
C

IF (RFLAG.NE.'Y') GOTO 420
IF (RDFLG.NE.'Y') GOTO 380
DO 370 I s 1, M

Q(I, I) = 1.ODO / R(I, I)
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370 CONTINUE
GOTO 420

380 CONTINUE
CALL SAVE(NR, NRD. M, M, R, G)
DO 400 J = 1, M

DO 390 I = 1, M
Q(I, J) = O.ODO

390 CONTINUE
Q(J, J) = 1.ODO

400 CONTINUE
CALL MLINEQ(NRD, NR, M, M, G, Q, COND, IND, CPERM)
WRITE (NOUT, 908) COND
IF (COND.LT.RTOL) GOTO 410
WRITE (NOUT, 910)
READ (5, 834) CFLAG
IF (CFLAG.NE.'Y') GOTO 430

410 CONTINUE
WRITE (NOUT, 912)

420 CONTINUE
C
C SET UP MATRIX PENCIL FOR CONTINUOUS-TIME PROBLEM USING
C R INVERSE
C

IF (SFLAG.EQ.'Y') CALL
X SEQUIV(NR, NRD, M, N, A, B, CQC, S, Q, F, G, RDFLG, RFLAG)
CALL RINV(NR, NRD, N, NN, M, E, A, B, CQC, Q, G, F, RS, CPERM,
X RDFLG, RFLAG, EFLAG, IBAL, TYPE)
GOTO 440

430 CONTINUE
C
C SET UP MATRIX PENCIL FOR CONTINUOUS-TIME PROBLEM USING
C COMPRESSION TECHNIQUE WHEN R IS ILL-CONDITIONED WITH
C RESPECT TO INVERSION

j.1 C
WRITE (NOUT, 914)
IF (.NOT.TYPE) CFLAG = 'Y'
KFLAG = 'N'
CALL CMPRS(NR, NRD, NRT, N, NN, NNPM, M, E, A, B, CQC, R, S, G,
X F, U, WK, CPERM, CSCALE, BETA, EFLAG, SFLAG, IBAL, INFO)
IF (INFO.NE.0) GOTO 720

440 CONTINUE
IF (TYPE) GOTO 470

* C
C CONVERT PENCIL TO DISCRETE-TIME PENCIL IF DISCRETE PROBLEM
C

NP1 =N+1
DO 460 J = NP1, NN

DO 450 I 2 1, NN
TEMP z G(I, J)
G(I, J) F(I, J)
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F(I, J) z TEMP
'450 CONTINUE
460 CONTINUE
470 CONTINUE

IF CIBAL.EQ.1) CALL BCORBKCNR, NRD, M, N, A, B, CQC,- S, Z)
C
C SAVE PENCIL IF ITERATING FOR ROBUSTNESS RECOVERY
C

IF (KFLAG.NE.'Y') GOTO 500
CALL SAVE(NRD, NRT, NNl, NNl, G. U)
DO 490 I = 19 N

NNI = NN~ + I

DO 480 J = 1, N
NPJ 2 N + J

%NNPJ = NN + J
-9 U(NNPJ. I) =FCJ, I)

U(NNPJ, NPI) = FCJ, NPI)
U(J, NNPI) x F(NPJ, I)
UCNPJ, NNPI) = FCNPJ, NPI)

480 CONTINUE
490 CONTINUE
500 CONTINUE

C
C COMPUTE THE RICCATI SOLUTION
C

CALL RICSOL(NR, NRD, NNl, N, G, F, E, Z, ALFR, ALFI, BETA,
X CPERM, CSCALE, IND. lORD, IBAL, TYPE, EFLAG)
IF (IND(1).NE.O) GOTO 690
INFO =IND(2)
IF (CPERM(1).EQ.1.OD +e 20) CALL SAVE(NRD, NRD, N, N, Z, F)
IF (IBAL..NE.1) GOTO 530

* C
C ESTIMATE CONDITION OF CO-ORDINATE BALANCING TRANSFORMATION
C WITH RESPECT TO INVERSION

* C
DO 520 J =1, N

DO 510 I 1, N
G(I, J) z O.ODO

510 CONTINUE
GOJ, J) = 1.ODO

520 CONTINUE
CALL SAVE(NR, NRD, N, N, E, Z)
CALL MLINEQ(NRD, NRD, N, N, Z, G, COND, IND, CSCALE)
WRITE (NOUT, 916) COND

530 CONTINUE
C
C OUTPUT THE SOLUTION
C

WRITE (NOUT, 918)

* 118



NWC TP 6521

IF (.NOT.TYPE) GOTO 560
WRITE (NOUT, 920)
DO 550 1I= 1, NN

IF (ALFRCI).GE.O.ODO) GOTO 550
IF (BETA(I).NE.O.ODO) GOTO 540
WRITE (NOUT, 922)
GOTO 550

540 CONTINUE
ALFR(I = ALFR(I / BETA(I
ALFI(I) = ALFICI / BETA(I
WRITE (NOUT, *) ALFR(I, XLFICI

550 CONTINUE
GOTO 580

560 CONTINUE
WRITE (NOUT, 924)
DO 570 1 z 1, NN

IF (BETA(I).EQ.0.ODO) GOTO 570
IF CDABS(ALFR(I)).GE.BETA(I)) GOTO 570
ALFR(I z ALFR(I / BETA(I
ALFICI = ALFICI / BETACI
WRITE (NOUT, 0) ALFR(I, ALFICI

570 CONTINUE
580 CONTINUE

IF (INFO.NE.0) GOTO 700
IF CCPERMC1).EQ.1.OD +. 20) GOTO 710

*IF (M.EQ.0) WRITE (NOUT, 926)
IF (IORD.EQ.-l) WRITE (NOUT, 928)
IF CIORD.EQ.0) WRITE (NOUT, 930)
IF CIORD.EQ.1) WRITE (NOUT, 932)
CALL MOUT(NOUT, NR, N. N, F)

C
C COMPUTE CONDITION ESTIMATES
C

X1N zDlNRM(NRD, N, N, F)
CALL SAVE(NR, HR. N. N. CQC, C)
IF (SFLAG.EQ.'Y') CALL
X SEQUIV(HR, NRD, 14, N, AS, B, C, S, Q, Z. G, RDFLG, RFLAG)
ClN z D1NRM(NR, N, N, C)
CALL FBGAIN(NR, NRD, NRD, N, M4, A, B, E, R, Q, S, F, Z, G,
X CSCALE, IND. EFLAG, RDFLG, RFLAG, SFLAG, TYPE)
WRITE (flOUT, 934) XlN, CiN, CPERM(l)
CALL MULB(NR, NRD, N, M, N, B, Z, CSCALE)
CALL MSUB(NR. NRD, NRD, N, N, A, Z. Z)
IF (TYPE) GOTO 600
CLlN z D1NRI4(NRD, N, N, Z)
CALL TRNATA(NRD, N, Z)
CLTlN x D1NRM(NRD, N, N, Z)
CALL BALANC(NRD. N, Z, Li, L2, CSCALE)

* CALL ELMHES(NRD, N, Li, L2, Z, IND)
CALL HQR(NRD, N, Li, L2, Z. ALFR, ALFI, L3)
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IF (L3.NE.O) WRITE (NOUT, 936)
SR = O.ODO
DO 590 I = 1, N

SR = DMAX1(SR, DSQRT(ALFR(I)OALFR(I) + ALFI(I)*ALFI(I)))
590 CONTINUE

TEMP = 1.ODO - CLIN * CLTIN
IF (TEMP.LE.O.ODO) TEMP = 1.ODO - SR * SR
CA = DFLOAT(N) * (CIN / X1N + 2.ODO * CLIN * CLTIN) / TEMP
WRITE (NOUT, 938) CA, SR, CLIN, CLT1N
GOTO 620

600 CONTINUE
Li = 0
L2= 1
CALL LYPCND(NRD, NRD, N, Z, F, G, ALFR, ALFI, BETA, LI, L2)
CALL SEPEST(NRD, N, Z, G, SEP, Li)
IF (L1.NE.O) WRITE (NOUT, 940)
TEMP = DABS(ALFR(1))
DO 610 I = 2, N

TEMP = DMIN1(TEMP, DABS(ALFR(I)))
610 CONTINUE

CB = (CIN / X1N + 2.ODO * D1NRM(NR, N, N, AS) + X1N •

x D1NRM(NR, N, N, RS)) / SEP
CA = CIN / XlN • SEP)
TEMP z 2.ODO • TEMP
WRITE (ROUT, 942) CB, CA, TEMP, SEP

620 CONTINUE
C
C SET UP FOR ANOTHER ROBUSTNESS RECOVERY ITERATION
C

IF (KFLAG.NE.'Y') GOTO 680
WRITE (NOUT, 944)
READ (5, 834) KFLAG
WRITE (NOUT, 826) KFLAG
IF (KFLAG.NE.'Y') GOTO 650
WRITE (NOUT, 946)
READ (5, 0) DGN
WRITE (NOUT, 830) DGN
IF (IBAL.EQ.1 .AND. ITER.EQ.1).CALL

X MQFWO(NRT, NR, N, WK, E, CPERM)
ITER = ITER + 1
DG = DG -DGN
DO 640 1 1, N

NPI = + I
NNPI = IN + I
DO 630 J = 1, N

NPJ = N + J
NNPJ = NN + J
U(NPJ, I) = U(NPJ, I) + DO • WKCJ, I)
F(J, I) z U(NNPJ, I)
F(J, NPI) = U(NNPJ, NFI)
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F(MPJ, I) z U(J, NNPI)
F(MPJ, NPI) = U(NPJ, NNPI)

630 CONTINUE
640 CONTINUE

CALL SAVE(MRT, NRD, NM, MN, U, G)
DG = DGN
GOTO 500

650 CONTINUE
DG - DG - DGI
DO 670 I = 1, N

DO 660 J = 1, N
CQC(J, I) = CQC(J, I ) DG WK(J.M, I)

660 CONTINUE
670 CONTINUE
680 CONTINUE

IF (CFLAG.NE.'Y') STOP
C
C COMPUTE THE RESIDUAL
C

WRITE (NOUT, 948)
READ (5, 834) RSFLG
WRITE (NOUT, 950) RSFLG
IF (RSFLG.NE.'Y') GOTO 730
CALL RESID(NR, MR. NRD, MRD, N, M, E, A, B, CQC, R, S, Q, RS,

X F, G, Z, CPERM. IND, RTOL, EFLAG, RFLAG, RDFLG, SFLAG,
X RSD, TYPE, NOUT)
WRITE (NOUT, 952) RSD
WRITE (NOUT, 954)
READ (5, 834) RMFLG
WRITE (NOUT, 956) RMFLG
IF (RMFLG.NE.'Y') GOTO 730
WRITE (MOUT, 958)
CALL MOUT(NOUT, MR. N, N, RS)
GOTO 730

690 CONTINUE
WRITE (NOUT, 960)
STOP

700 CONTINUE
WRITE (NOUT, 962)
STOP

710 CONTINUE
WRITE (NOUT, 964)
CALL MOUT(NOUT, NRD, N, N, F)
STOP

720 CONTINUE
WRITE (NOUT, 966)
STOP

730 CONTINUE
IF (IORD.NE.-1) STOP

C
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C APPLY NEWTON'S METHOD FOR ITERATIVE IMPROVEMENT
C

WRITE (NOUT, 968)
READ (5, 834) NFLAG
WRITE (NOUT, 970) NFLAG
IF (NFLAG.NE.'Y') GOTO 750
WRITE (NOUT, 972)
READ (5, *) MAXIT
WRITE (NOUT, 974) MAXIT
CALL SAVE(NRD, NRT, N, N, F, U)
CALL NEWT(NR, NR, NRD, NRT, N, M, E, A, B, CQC, R, S, Q, RS,

X U, G, F, Z, ALFR, ALFI, BETA, IND, RTOL, EFLAG, RFLAG,
X RDFLG, SFLAG, SEP. TYPE, MAXIT, INFO, NOUT)
IF (INFO.NE.O) GOTO 760
WRITE (NOUT, 976) MAXIT
WRITE (NOUT, 978) IND(1)
CALL RESID(NR, NR, NRD, NRT, N, M, E, A, B, CQC, R, S, Q, RS,
X U, G, Z, CPERM, IND, RTOL, EFLAG, RFLAG, RDFLG, SFLAG,
X RSD, TYPE, NOUT)
WRITE (NOUT, 980)
CALL MOUT(NOUT, NRT, N, N, U)
WRITE (NOUT, 918)
DO 740 I = 1, N

WRITE (MOUT, *) ALFR(I), ALFICI)
740 CONTINUE

WRITE (NOUT, 952) RSD
CALL SAVE(NRT, NRD, N, N, U, F)
WRITE (NOUT, 954)
READ (5, 834) RMFLG
WRITE (NOUT, 956) RMFLG
IF (RMFLG.NE.'Y') GOTO 750
WRITE (NOUT, 958)
CALL MOUT(NOUT, NR, N, N, RS)

750 CONTINUE

C
C CALCULATE OPTIMAL FEEDBACK GAIN MATRIX
C

CALL FBGAIN(NR, NRD, NRD, N, M, A, B, E, R, Q, S, F, Z, G,
X CPERM, IND, EFLAG, RDFLG, RFLAG, SFLAG, TYPE)
IF (CPERM(1).GT.RTOL) WRITE (NOUT, 984) CPERM(1)
WRITE (NOUT, 982)
CALL MOUT(NOUT, NRD, M, N, Z)
STOP

760 CONTINUE
IF (INFO.EQ.-3) GOTO 770
WRITE (NOUT, 986) INFO
CALL MOUT(HOUT, NRT, N, N, U)
WRITE (NOUT, 988) BETAMi)
CALL RESID(NR, NR, NRD, NRT, N, M, E, A, B, CQC, R, S, Q, RS,

X U, G, Z, CPERM, IND, RTOL, EFLAG, RFLAG, RDFLG, SFLAG,

122

,9



NWC TP 6521

X RSD, TYPE, NOUT)
GOTO 740

770 CONTINUE
WRITE (NOUT, 990)
STOP

800 FORMAT(/' GENERALIZED ALGEBRAIC MATRIX RICCATI EQUATION SOLVER',
X //,' ENTER SYSTEM ORDER "N": + FOR CONTINUOUS TIME PROBLE'.
X 'MS, - FOR DISCRETE', I, ' MAXIMUM ORDER =', 13, )

802 FORMAT (/' N =', 13/)
804 FORMAT //' ORDER EXCEEDS MAXIMUM *** EXECUTION TERMINATED', I)
806 FORMAT (//' ENTER NUMBER OF SfSTEM INPUTS "M"', /,

X ' AND NUMBER OF SYSTEM OUTPUTS "L"'/)
808 FORMAT C/' M =1, 13, 5X, 'L =, 13/)
810 FORMAT (/' SYSTEM HAS NO INPUTS, RICCATI EQUATION DEGENERATES',

X ' TO A LYAPUNOV EQUATION'/)
812 FORMAT /' SYSTEM HAS NO OUTPUT *** EXECUTION TERMINATED'/)
814 FORMAT (W' ENTER FLAG FOR DESIRED SOLUTION:', I,

X ' -1 FOR STABILIZING SOLUTION',/,' 0 FOR ANY SOLUTION', /,
X ' +1 FOR DESTABILIZING SOLUTION'/)

816 FORMAT (' IORD 1', 2/)
818 FORMAT (I' ENTER BALANCING FLAG: 0 FOR WARD BALANCING', I,

X ' 1 FOR CO-ORDINATE BALANCING'/,
X ' 2 FOR NO BALANCING'/)

820 FORMAT (W' IBAL =', 12/)

822 FORMAT (/' NO BALANCING ATTEMPTED'/)
824 FORMAT

X CW' DO YOU WISH TO ITERATE FOR ROBUSTNESS RECOVERY',

X ' (Y OR N)'/)

826 FORMAT C/' KFLAG ', Al/)
828 FORMAT CW' ENTER INITIAL GAMMA PARAMETER'!)
830 FORMAT (W' DG =', D26.18/)
832 FORMAT (W' DO YOU WISH TO ENTER AN "E" MATRIX (Y OR N)', /,

X ' DEFAULT IS E = IDENTITY MATRIX'/)

834 FORMAT CIAI)
836 FORMAT (I' EFLAG ', Al/)
838 FORMAT C!' USING DEFAULT: "E" = IDENTITY'/)
840 FORMAT C!' ENTER THE ', 13, ' X ', 13, ' MATRIX "E" BY ROWS'/)
842 FORMAT C/' THE "E" MATRIX IS:'/)
844 FORMAT

X C!' ENTER THE ',13,' X ',13,' SYSTEM MATRIX "A" BY RQWS'/)

846 FORMAT CW' THE "A" MATRIX IS:'/)
848 FORMAT

X (/' ENTER THE ', 13,' X ',13,' INPUT MATRIX "B" BY ROWS'/)
850 FORMAT (/' THE "B" MATRIX IS:'/)
852 FORMAT

X Wl' ENTER THE ', 13,' X ',13,' OUTPUT MATRIX "C" BY ROWS'/)

854 FORMAT C/' THE "C" MATRIX IS:'/)
856 FORMAT(!' DO YOU WISH TO ENTER A CONTROL WEIGHTING MATRIX "R"'.

X ' (Y OR N)', /, ' DEFAULT IS R IDENTITY MATRIX'/)

858 FORMAT C!' RFLAG ', AIM)
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860 FORMAT (/' USING DEFAULT: "R" z IDENTITY'/)
862 FORMAT(/' DO YOU WISH TO ENTER A DIAGONAL "R" MATRIX(Y OR N)'/)
864 FORMAT (I' RDFLG ', Al/)
866 FORMAT (/' ENTER THE ', 13, ' DIAGONAL ELEMENTS AS A ROW'/)
868 FORMAT (/' THE "R" MATRIX IS:'/)
870 FORMAT (/' ENTER THE ', 13, ' X ',13,' INPUT WEIGHTING MATRIX',

X ' "R" BY ROWS'/)
872 FORMAT(/' DO YOU WISH TO ENTER AN OUTPUT WEIGHTING MATRIX "Q"',

X ' (Y OR N)', /, ' DEFAULT IS Q = IDENTITY MATRIX'/)
874 FORMAT (I' QFLAG ' Al/)
876 FORMAT (/' USING DEFAULT: "Q' = IDENTITY'/)
878 FORMAT (/' ENTER THE ', 13, ' X ', 13,

X ' OUTPUT WEIGHTING MATRIX "Q"', ' BY ROWS'/)
880 FORMAT (/' THE "0" MATRIX IS:'/)
882 FORMAT (/' DO YOU WISH TO ENTER A STATE WEIGHTING MATRIX "Q"',

X ' (Y OR N)', I, ' DEFAULT IS Q s IDENTITY MATRIX'/)
884 FORMAT (W' USING DEFAULT: "Q" IDENTITY'/)
886 FORMAT (/' ENTER THE', 13, ' X '1 13,

X ' STATE WEIGHTING MATRIX "Q"', ' BY ROWS'/)
Vol 888 FORMAT (/' DO YOU WISH TO ENTER A STATE/INPUT CROSS-WEIGHTING',

X ' MATRIX "S" (Y OR N)', /, ' DEFAULT IS S = ZERO MATRIX'/)
890 FORMAT (/' SFLAG = ', At/)
892 FORMAT C/' USING DEFAULT: "S" ZERO MATRIX'/)
894 FORMAT (W' ENTER THE ', 13, ' X '. 13,

X ' CROSS-WEIGHTING MATRIX "S"', ' BY ROWS'/)
896 FORMAT (/' THE "S" MATRIX IS: '/)
898 FORMAT C/' CO-ORDINATE BALANCING UNSUCCESSFUL BECAUSE:')

'a 900 FORMAT (' CAN NOT COMPUTE SOLUTION TO LYAPUNOV EQUATIONt /)
902 FORMAT (' CONTROLLABILITY GRAMMIAN NOT NUMERICALLY P.D.'/)
904 FORMAT C' CONVERGENCE FAILURE IN EIGENVALUE ROUTINE'/)
906 FORMATC/' DO YOU WISH TO CONTINUE WITH WARD BALANCING(Y OR N)'/)
908 FORMAT

X (/' INVERSION CONDITION ESTIMATE FOR "R' MATRIX =',D26.18,/)
910 FORMAT (/' DO YOU WISH TO CONTINUE USING "R" INVERSE (Y OR N)'I)
912 FORMAT C/' PROCEEDING WITH SOLUTION USING "R" INVERSE'/)
914 FORMAT (/' PROCEEDING WITH COMPRESSION TECHNIQUE'/)
916 FORMAT (/' A CONDITION ESTIMATE FOR THE CO-ORDINATE BALANCING',

X ' TRANSFORMATION IS:', /, D26.18/)
918 FORMAT (/

X ' THE CLOSED LOOP EIGENVALUES FOR THE STABILIZING RI CATI',
X ' SOLUTION ARE:'/)

920 FORMAT (' (FOR CONTINUOUS TIME)'/)
922 FORMAT (/' INFINITE EIGENVALUE'I/)
924 FORMAT (' (FOR DISCRETE TIME)'/)
926 FORMAT (/' THE LYAPUNOV SOLUTION IS:'/)
928 FORMAT (/' THE STABILIZING RICCATI SOLUTION IS:'/)
930 FORMAT /' A RICCATI SOLUTION IS: '/)
932 FORMAT (/' THE DESTABILIZING RICCATI SOLUTION IS'/)
934 FORMAT

X (/' X1N ',D15.8,X,'C1N-",D15.8,X, 'K(Z11) c. D15.8/)
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936 FORMAT (/'ERROR IN HQR '/)
938 FORMAT (/ KA(X) =', D15.8, lOX, 'SR =', D15.8, I, ' CLiN =,

X D15.8, lOX, 'CLTlN =', D15.8/)
940 FORMAT (W ERROR IN SEPEST'/)
942 FORMAT (/ KBCX) =', D15.8,10X,'KA(X) :',D15.8,/,' SEPEST :',

X D15.8, lOX, 'SEP =', D15.8, /)
944 FORMAT (/ DO YOU WISH TO ENTER ANOTHER GAMMA (Y OR N)'/)
946 FORMAT (/ ENTER NEW VALUE FOR GAMMA'/)
948 FORMAT (/ DO YOU WISH A RESIDUAL CALCULATION (Y OR N)'/)
950 FORMAT (/ RSFLG = ', Al/)
952 FORMAT (/ RESIDUAL 1-NORM/SOLUTION 1-NORM =', D26.18, /)
954 FORMAT (/ DO YOU WANT TO SEE THE RESIDUAL MATRIX (Y OR N)'/)
956 FORMAT (/ RMFLG = ', A/)

958 FORMAT (/ THE RESIDUAL MATRIX, BY ROWS:'/)
960 FORMAT C/ MORE THAT 50 ITERATIONS REQUIRED BY QZITW', /,

X , m' EXECUTION TERMINATED'/)
962 FORMAT (/' CONVERGENCE FAILURE IN ORDER ROUTINE', /,

X ' *** EXECUTION TERMINATED'/)
964 FORMAT(/' SCHUR VECTOR MATRIX SINGULAR TO WORKING PRECISION',/,

X ' THEREFORE, SOLUTION BY THIS TECHNIQUE NOT POSSIBLE', /,
X ' THE SCHUR VECTOR MATRIX IS:'/)

966 FORMAT (/' COMPRESSION FAILURE ** EXECUTION TERMINATED'/)
968 FORMAT (/' DO YOU WANT TO TRY ITERATIVE IMPROVEMENT (Y OR N)'/)
970 FORMAT (/' NFLAG = ', Al/)
972 FORMAT (/' ENTER MAXIMUM NUMBER OF NEWTON ITERATIONS'/)
974 FORMAT (/' MAX. NO. OF ITERATIONS =1, 14/)
976 FORMAT

X C/' CONVERGED AFTER',I3,' ITERATIONS OF NEWTONS METHOD'/)
978 FORMAT C' CONVERGENCE CRITERIA', 12/)
980 FORMAT C/' THE REFINED STABILIZING SOLUTION IS:'/)
982 FORMAT (/' THE GAIN MATRIX IS:'/)
984 FORMAT (//' R + GTX*G ILL-CONDITIONED WRT INVERSION', /,

X ' CONDITION NUMBER =', D26.18, //)
986 FORMAT C/' NEWTON ITERATION FAILED, INFO ', 13/,

X ' THE SOLUTION AT THE LAST ITERATION IS:'/)
988 FORMAT (/' THE 1-NORM OF THE ERROR IS:', D26.18/)
990 FORMAT(/' SORRY, PROGRAM NOT ABLE TO PERFORM NEWTON ITERATION',

X /, ' FOR ARBITRARY E-MATRIX AT THIS TIME1tI"/)
END
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SUBROUTINE BALCOR (NR,NRZL,MN,A,B,C,CQC,ST,WK,Z,WK1,WK2,
X WK3,IPVT,ISTAB,SFLAG,TYPE)

C
C *****PARAMETERS:

INTEGER NRNRZLM,N,IPVT(N),ISTAB
CHARACTER SFLAG
DOUBLE PRECISION A(NR,N),B(NR,M),C(NRN),CQC(NR,N),S(NR,M),
X T(NR,N),WK(NRN),Z(NRZ,N),WK1(N),WK2(N),WK3(N)
LOGICAL TYPE

C

C *****LOCAL VARIABLES:
INTEGER IJ,NPI,NPJ

C
C *****FORTRAN FUNCTIONS:
C NONE.
C
C *"**SUBROUTINES CALLED:
C BCORBK, BLCRDC, BLCRDD, MMUL, MQFWO, MULB, TRNATB
C
C
C

C ***'PURPOSE:
C GIVEN THE MODEL MATRICES A, B AND C FOR A FIRST ORDER LINEAR
C MODEL IN STATE SPACE FORM, THIS SUBROUTINE CALCULATES A
C BALANCING TRANSFORMATION, T, SUCH THAT IF T WAS APPLIED TO THE
C MODEL AS A CHANGE OF COORDINATES, THE REACHABILITY AND
C OBSERVABILITY GRAMMIANS WOULD BE EQUAL AND DIAGONAL. HOWEVER,
C T IS ACTUALLY APPLIED TO THE MODEL MATRICES IN A SPECIAL WAY
C FOR SOLUTION OF THE OPTIMAL REGULATOR PROBLEM BY RICPACK.
C
C REF.: ARNOLD, W.F., "ON THE NUMERICAL SOLUTION OF
C ALGEBRAIC MATRIX RICCATI EQUATIONS," PHD THESIS, USC,
C DECEMBER 1983.
C
C *****PARAMETER DESCRIPTION:
C
C ON INPUT:
C
C NR INTEGER
C ROW DIMENSION OF THE ARRAYS CONTAINING THE A, B,
C C, CQC, S, T AND WK MATRICES AS DECLARED IN THE
C MAIN CALLING PROGRAM DIMENSION STATEMENT;
C
C NRZ INTEGER
C ROW DIMENSION OF THE ARRAY CONTAINING THE Z MATRIX
C AS DECLARED IN THE MAIN CALLING PROGRAM DIMENSION
C STATEMENT;
C
C L INTEGER
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C ROW DIMENSION OF THE C MATRIX;
C
C M INTEGER
C COLUMN DIMENSION OF THE B AND S MATRICES;
C
C N INTEGER
C ORDER OF THE SQUARE MATRICES A, COC AND T

. C COLUMN DIMENSION OF THE C MATRIX;
C
C A REAL(NR,N)
C MODEL SYSTEM MATRIX, ALTERED BY THIS ROUTINE;
C
C B REAL(NR,M)
C MODEL INPUT MATRIX;
C
C C REAL(NR,N)
C MODEL OUTPUT MATRIX, ALTERED BY THIS ROUTINE;
C

C CQC REAL(NR,N)
C MATRIX PRODUCT CT*Q*C WHERE T DENOTES MATRIX
C TRANSPOSE, ALTERED BY THIS ROUTINE;
C
C S REAL(NR,M)
C STATE - INPUT CROSS-WEIGHTING MATRIX, ALTERED BY
C THIS ROUTINE;
C
C WK REAL(NR,N)
C SCRATCH ARRAY OF SIZE AT LEAST N BY N;
C
C WK1,WK2,WK3
C REAL(N)
C WORKING VECTORS OF SIZE AT LEAST N;
C
C IPVT INTEGER(N)
C WORKING VECTOR OF SIZE AT LEAST N;
C
C SFLAG CHARACTER
C FLAG SET TO 'Y' IF S.IS OTHER THAN THE ZERO MATRIX;
C
C TYPE LOGICAL
C = .TRUE. FOR A CONTINUOUS-TIME MODEL
C = .FALSE. FOR A DISCRETE-TIME MODEL.
C
C ON OUTPUT:
C
C A CONTAINS THE MATRIX PRODUCT FmT;
C
C CQC CONTAINS THE MATRIX PRODUCT (C*T)-TRANSPOSE*Q*C*T;
C
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C S CONTAINS THE MATRIX PRODUCT T-TRANSPOSE*S;
C
C T REAL(NR,N)
C CONTAINS THE BALANCING TRANSFORMATION, T;
C
C Z REAL(NRZ,N)
C 2N BY (N4M) MATRIX WITH THE ORIGINAL A MATRIX STORED
C IN THE UPPER LEFT N BY N BLOCK, CQC IN THE LOWER LEFT
C N BY N BLOCK, S IN THE UPPER RIGHT N BY M BLOCK AND
C B IN THE LOWER RIGHT N BY M BLOCK;
C
C ISTAB INTEGER
C ERROR FLAG WITH THE FOLLOWING MEANINGS
C = ZERO, NORMAL RETURN
C = NONZERO, A BALANCING TRANSFORMATION COULD NOT BE
C CALCULATED AND THE A, CQC AND S MATRICES ARE
C RETURNED UNALTERED.
C
C *****ALGORITHM NOTES:
C NONE.
C
C *****HISTORY:
C THIS SUBROUTINE WAS WRITTEN BY W.F. ARNOLD, NAVAL WEAPONS
C CENTER, CODE 35104, CHINA LAKE, CA 93555, AS PART OF THE
C SOFTWARE PACKAGE RICPACK', SEPTEMBER 1983.
C
C ------ ---- - ------

C

C12
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SUBROUTINE RICSOL(NR,NRDNN,N,G,F,EZ,ALFRALFIBETACPERM,
X CSCALE,IND,IORDIBAL,TYPE,EFLAG)

C

C "****PARAMETERS:

INTEGER NRNRDNNN,IND(NN),IORD,IBAL
CHARACTER EFLAG
DOUBLE PRECISION G(NRD,NN).F(NRD,NN),E(NR,N),Z(NRD,NN),

X ALFR(NN),ALFI(NN),BETA(NN),CPERM(NN),CSCALE(NN)

- LOGICAL TYPE
C
C *****LOCAL VARIABLES:

INTEGER IIERR,IFAIL,IGH,J,LOWNPJ
DOUBLE PRECISION CONDEPS,EPS1
LOGICAL MATZ

C
C *****FORTRAN FUNCTIONS:

* C NONE.

C
C ****SUBROUTINES CALLED:
C BALGBK, BALGEN, MLINEQ, MULB, ORDER, QZHESW, QZITW, QZVAL
C
C -

C
* C ****PURPOSE:

C GIVEN THE 2N BY 2N MATRIX PENCIL
C
C LAMBDA 9 F - G
C
C THIS SUBROUTINE FINDS THE ORTHOGONAL MATRIX Z SUCH THAT
C
C Q 0 (LAMBDA * F - G) * Z
C
C IS IN GENERALIZED ORDERED REAL SCHUR FORM. FURTHERMORE, THE
C UPPER LEFT N BY N BLOCK OF THE TRANSFORMED PENCIL CONTAINS
C THE EIGENVALUES SPECIFIED BY THE PARAMETER lORD. THE
C SUBROUTINE THEN SOLVES THE LINEAR SYSTEM
C
C X 0 E * Zll - Z21
C
C FOR X, WHERE Zll AND Z21 ARE THE UPPER AND LOWER LEFT N PY N
C BLOCKS OF Z.
C
C REF.: ARNOLD, W.F., "ON THE NUMERICAL SOLUTION OF
C ALGEBRAIC MATRIX RICCATI EQUATIONS," PHD THESIS, USC,'.4

C DECEMBER 1983.
C
C *****PARAMETER DESCRIPTION:

4 C
C ON INPUT:
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C
C NR INTEGER
C ROW DIMENSION OF THE ARRAY CONTAINING THE MATRIX E
C AS DECLARED IN THE MAIN CALLING PROGRAM DIMENSION
C STATEMENT;
C
C NRD INTEGER
C ROW DIMENSION OF THE ARRAYS CONTAINING THE MATRICES
C G, F AND Z AS DECLARED IN THE MAIN CALLING PROGRAM
C DIMENSION STATEMENT4
C
C NN INTEGER
C ORDER OF THE SQUARE MATRICES G AND F;
C
C N INTEGER
C ORDER OF THE SQUARE MATRIX E;
C
C G REAL(NRDNN)
C PENCIL MATRIX CORRESPONDING TO THE GENERALIZED RICCATI
C PROBLEM, WHOSE CONTENTS ARE ALTERED BY THIS ROUTINE;
C
C F REAL(NRDNN)
C PENCIL MATRIX CORRESPONDING TO THE GENERALIZED RICCATI
C PROBLEM, WHOSE CONTENTS ARE ALTERED BY THIS ROUTINE;
C
C E REAL(NRN)
C DESCRIPTOR MATRIX OR CO-ORDINATE BALANCING MATRIX
C AS SPECIFIED BY THE PARAMETER IBAL;
C
C CPERM REAL(NN)
C WORKING VECTOR OF SIZE AT LEAST NN;
C
C CSCALE REAL(NN)
C WORKING VECTOR OF SIZE AT LEAST NN;
C
C IND INTEGER(NN)
C WORKING VECTOR OF SIZE AT LEAST NN;
C
C IORD INTEGER

"' C PARAMETER SPECIFYING THE SPECTRUM OF THE UPPER'LEFT N
C BY N BLOCK OF THE ORDERED REAL SCHUR FORM AS FOLLOWS:
C 1 1 GENERALIZED EIGENVALUES WHOSE MAGNITUDE IS LESS
C THAN UNITY
C 2 0 ANY ORDER
C = -1 GENERALIZED EIGENVALUES WHOSE REAL PARTS ARE
C LESS THAN ZERO;
C
C IBAL INTEGER
C PARAMETER SPECIFYING THE BALANCING BEING EMPLOYED AS
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C FOLLOWS:
C = 0 WARD BALANCING AND E IS A DESCRIPTOR MATRIX
C = 1 CO-ORDINATE BALANCING AND E IS THE BALANCING
C TRANSFORMATION
C z 2 NO BALANCING AND E IS A DESCRIPTOR MATRIX;
C
C TYPE LOGICAL
C -. TRUE. FOR CONTINUOUS-TIME SYSTEM
C = .FALSE. FOR DISCRETE-TIME SYSTEM;
C
C EFLAG CHARACTER
C FLAG SET TO 'Y' IF E IS A DESCRIPTOR MATRIX THAT IS
C OTHER THAN THE IDENTITY MATRIX.
C
C ON OUTPUT:
C
C F CONTAINS THE SOLUTION MATRIX X COMPUTED AS SHOWN
C ABOVE;
C
C Z REAL(NRD,NN)
C CONTAINS THE MATRIX PRODUCT
C CE 0) (Zll Z12)
C ( )' ( )

C (0 I) (Z21 Z22)
C WHERE Z IS THE ORTHOGONAL TRANSFORMATION MATRIX
C DESCRIBED ABOVE;
C
C ALFR REAL(NN)
C REAL PARTS OF THE DIAGONAL ELEMENTS THAT WOULD RESULT
C IF THE Q AND Z TRANSFORMATIONS WERE APPLIED TO THE
C G MATRIX SUCH THAT IT WOULD BE REDUCED COMPLETELY TO
C TRIANGULAR FORM AND THE DIAGONAL ELEMENTS OF THE
C TRANSFORMED F MATRIX (ALSO TRIANGULAR) WOULD BE REAL
C AND POSITIVE;
C
C ALFI REAL(NN)
C IMAGINARY PARTS OF THE DIAGONAL ELEMENTS THAT WOULD
C RESULT IF THE Q AND THE Z TRANSFORMATIONS WERE
C APPLIED TO THE G MATRIX SUCH THAT IT WOULD BE REDUCED
C COMPLETELY TO TRIANGULAR FORM AND THE DIAGONAL,
C ELEMENTS OF THE TRANSFORMED F MATRIX (ALSO TRIANGULAR)
C WOULD BE REAL AND POSITIVE. NONZERO VALUES OCCUR IN
C PAIRS; THE FIRST MEMBER IS POSITIVE AND THE SECOND
C MEMBER IS NEGATIVE;
C
C BETA REAL(NN)
C REAL NONNEGATIVE DIAGONAL ELEMENTS OF F THAT WOULD
C RESULT IF G WERE REDUCED COMPLETELY TO TRAINGULAR
C FORM; THE GENERALIZED EIGENVALUES ARE THEN GIVEN BY
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C THE RATIOS ((ALFR + .IALFI)/BETA);
C

C CPERM(1)
C CONDITION ESTIMATE OF E'Z11 WITH RESPECT TO INVERSION;
C
C IND(1) ERROR FLAG AS FOLLOWS
C = 0 INDICATES NORMAL RETURN
C = NONZERO IF MORE THAT 50 ITERATIONS WERE REQUIRED TO
C DETERMINE THE DIAGONAL BLOCKS FOR THE QUASITRIANGULAR
C FORM;
C
C IND(2) ERROR FLAG AS FOLLOWS
C = 0 INDICATES NORMAL RETURN
C 1 1 INDICATES ATTEMPTED REORDERING FAILED.
C "***ALGORITHM NOTES:
C NONE.
C
C *'**HISTORY:
C THIS SUBROUTINE WAS WRITTEN BY W.F. ARNOLD, NAVAL WEAPONS
C CENTER, CODE 35104, CHINA LAKE, CA 93555, AS PART OF THE
C SOFTWARE PACKAGE RICPACK, SEPTEMBER 1983.
C
C
C
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SUBROUTINE NEWT(NR,NRR,NRW,NRX,N,M,E,A,B,CQC,R,S,RI,RSDM,X,Wl,
X W2,W3,ALFR,ALFI,WK1,IPVT,RTOL,EFLAG,RFLAG,
X RDFLGSFLAG,SEPTYPE,MAXIT,INFO,NOUT)

C

C *****PARAMETERS:
INTEGER NRNRR,NRW,NRX,N,, IPVT(N),MAXIT,INFONOUT
CHARACTER EFLAG,RFLAG,RDFLG,SFLAG
DOUBLE PRECISION E(NRN),A(NRN),B(NR,M),CQC(NR,N),R(NR,M),
X S(NR,M),RI(NRM),RSDM(NRR,N),X(NRX,N),
X Wl(NRW,N),W2(NRWN),W3(NRW,N),ALFR(N),
X ALFI(N),WK1(N),RTOL,SEP
LOGICAL TYPE

C
C ****LOCAL VARIABLES:

INTEGER I,IER1,IER2,ITER,J
DOUBLE PRECISION DPN1,EPS,EIN,H1N,TOL,T1,T2,T3,X1N

C
C *"'*FORTRAN FUNCTIONS:

DOUBLE PRECISION DSQRT
C
C 0 003FUNCTION SUBPROGRAMS:

DOUBLE PRECISION D1NRM
C
C *****SUBROUTINES CALLED:
C FBGAIN, LYPCND, LYPDSD, MADD, MKUL, MQF, MSCALE, MSUB, MULA,
C SEPEST, TRNATB
C
C

- C
C **PURPOSE:
C GIVEN THE MODEL MATRICES FOR THE CONTINUOUS- OR DISCRETE-TIME
C OPTIMAL REGULATOR PROBLEM THAT RESULTS IN A GENERALIZED
C ALGEBRAIC RICCATI EQUATION (GARE), AND AN INITIAL GUESS FOR
C THE SOLUTION TO THE GARE, THIS SUBROUTINE APPLIES A NEWTON
C TYPE ITERATIVE REFINEMENT PROCEDURE. TO GUARANTEE
C CONVERGENCE, THE INITIAL GUESS MUST STABILIZE THE CLOSED LOOP
C SYSTEM MATRIX E"-1*(A - BOK), WHERE
C
C K x (R**-I)*(BT*X*E + ST) CONTINUOUS
C
C K = ((R + BT*X*B)m*-1)*(BT*X*A + ST) DISCRETE
C
C AND T DENOTES MATRIX TRANSPOSE.
C
C REF.: ARNOLD, W.F., "ON THE NUMERICAL SOLUTION OF
C ALGEBRAIC MATRIX RICCATI EQUATIONS," PHD THESIS, USC,
C DECEMBER 1983.
C
C "** PARAMETER DESCRIPTION:
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C
C ON INPUT:
c
C NR INTEGER
C ROW DIMENSION OF THE ARRAYS CONTAINING THE MATRICES
C E, A, B, CQC, R, S AND RI AS DECLARED IN THE MAIN
C CALLING PROGRAM DIMENSION STATEMENT;
C
C NRR INTEGER
C ROW DIMENSION OF THE ARRAY CONTAINING THE MATRIX
C RSDM AS DECLARED IN"THE MAIN CALLING PROGRAM
C DIMENSION STATEMENT;
C
C NRW INTEGER
C ROW DIMENSION OF THE ARRAYS CONTAINING THE MATRICES
C WI, W2 AND W3 AS DECLARED IN THE MAIN CALLING
C PROGRAM DIMENSION STATEMENT;
C

C NRX INTEGER
C ROW DIMENSION OF THE ARRAY CONTAINING THE MATRIX X
C AS DECLARED IN THE MAIN CALLING PROGRAM DIMENSION
C STATEMENT;
C
C N INTEGER
C ORDER OF THE SQUARE MATRICES E. A, CQC. RSDM AND X
C ROW DIMENSION OF THE MATRICES B AND S;
C
C M INTEGER
C ORDER OF THE SQUARE MATRICES R AND RI
C COLUMN DIMENSION OF THE MATRICES B AND S;
C
C E REAL(NR,N)
C MODEL DESCRIPTOR MATRIX;
C
C A REAL(NR,N)
C MODEL SYSTEM MATRIX;
C
C B REAL(NR,M)
C MODEL INPUT MATRIX;
C
C CQC REAL(NR,N)
C MATRIX PRODUCT CTQ*C WHERE T DENOTES MATRIX
C TRANSPOSE;
C
C R REAL(NR,M)
C CONTROL WEIGHTING MATRIX;

;, C
C S REAL(NR,M)
C STATE - INPUT CROSS-WEIGHTING MATRIX;
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'. C
C RI REAL(NRM)
C INVERSE OF THE CONTROL WEIGHTING MATRIX;

C X REAL(NRX,N)
C INITIAL GUESS FOR RICCATI SOLUTION THAT MUST
C STABILIZE THE CLOSED LOOP SYSTFM MATRIX;
C

. C Wl,W2,W3
C REAL(NRWN)
C SCRATCH ARRAYS OF SIZE AT LEAST N BY N;
C
C WK1 REAL(N)
C WORK VECTOR OF LENGTH AT LEAST N;
C
C IPVT INTEGER(N)
C WORK VECTOR OF LENGTH AT LEAST N;
C
C RTOL REAL
C TOLERANCE ON THE CONDITION ESTIMATE OF R+BT'X*B
C WITH RESPECT TO INVERSION (DISCRETE PROBLEM).
C ERROR RETURN IF THIS TOLERANCE IS EXCEEDED;
C
C EFLAG CHARACTER
C FLAG SET TO 'Y' IF E IS OTHER THAN THE IDENTITY

- C MATRIX;
C
C RFLAG CHARACTER
C FLAG SET TO 'Y' IF R IS OTHER THAN THE IDENTITY
C MATRIX;
C
C RDFLG CHARACTER
C FLAG SET TO 'Y' IF R IS A DIAGONAL MATRIX;
C

• C SFLAG CHARACTER
C FLAG SET TO tY, IF S IS OTHER THAN THE ZERO MATRIX;
C
C TYPE LOGICAL
C = .TRUE. FOR CONTINUOUS-TIME SYSTEM
C = .FALSE. FOR DISCRETE-TIME SYSTEM;
C
C MAXIT INTEGER
C MAXIMUM NUMBER OF NEWTON ITERATIONS PERMITTED;
C
C NOUT INTEGER
C UNIT NUMBER OF OUTPUT DEVICE FOR ERROR WARNING
C MESSAGES.
C

S C ON OUTPUT:
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C RSDM REAL(NRR,N)
C DIFFERENCE MATRIX BETWEEN SOLUTIONS AT LAST TWO
C ITERATIONS;
C
C X REFINED RICCATI SOLUTION MATRIX;
C
C ALFR REALMN
C REAL PARTS OF THE CLOSED LOOP SYSTEM EIGENVALUES
C UNDER THE OPTIMAL FEEDBACK FOR THE RICCATI SOLUTION
C AT THE LAST ITERATION;
C
C ALFI REALMN
C IMAGINARY PARTS OF THE CLOSED LOOP SYSTEM

.. r",C EIGENVALUES UNDER THE OPTIMAL FEEDBACK FOR THE
C RICCATI SOLUTION AT THE LAST ITERATION;
C
C WKW() 1-NORM OF THE RSDM MATRIX;
C

'SC IPVT(1 CONVERGENCE CRITERIA INDICATOR;
C
C SEP REAL
C ESTIMATE OF THE SEPARATION OF THE CLOSED LOOP

I.'C SPECTRUM AT THE LAST ITERATION (CONTINUOUS PROBLEM);
C
C MAXIT NUMBER OF ITERATIONS PERFORMED;
C
C INFO INTEGER
C ERROR FLAG WITH THE FOLLOWING MEANINGS
C z -1 NO CONVERGENCE
C =-2 INITIAL GUESS NOT STABILIZING
C z -3 E MATRIX NOT IDENTITY
C z -4i INDICATES A FAILURE OF THE QR ALGORITHM TO
C DETERMINE THE EIGENVALUES IN SOLVING THE
C LYAPUNOV EQUATION
C = -5 CONDITION ESTIMATE OF R+BT*X*B WITH RESPECT TO
C INVERSION EXCEEDS THE TOLERANCE VALUE RTOL.
C
C ***#ALGORITHM NOTES:
C THE ALGORITHM CURRENTLY EMPLOYED IS BASED ON THE BARTELSP-
C STEWART ALGORITHM FOR LYAPUNOV EQUATIONS AND IS VALID FOR THE
C CASE E a IDENTITY ONLY AT THIS TIME.
C
C **"*HISTORY:

C CENTER, CODE 35104, CHINA LAKE, CA 93555, AS PART OF THE

C SOFTWARE PACKAGE RICPACK, SEPTEMBER 1983.
C
C - ---- - --------------- ---- ----------- -
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SUBROUTINE ORDER (AB,Z,NMAX,N,EPS,IFAIL,TYPE,IFIRST,IND)
C
C *****PARAMETERS:

INTEGER NMAXN,IFAIL,IFIRST,IND(N)
DOUBLE PRECISION A(NMAXN).,B(NMAXN),Z(NMAX,N),EPS
LOGICAL TYPE

C
C **'LOCAL VARIABLES:

INTEGER IIIIII,ISISTEP,K,L,LS,LS1,LS2,L1,L2,NUM
C
C *****FORTRAN FUNCTIONS:

DOUBLE PRECISION DABS
C
C ****SUBROUTINES CALLED:
C EXCHQZ
C
C ----------------------------

C
C **PURPOSE:
C GIVEN THE UPPER TRIANGULAR MATRIX B AND UPPER HESSENBERG
C MATRIX A WITH IXl OR 2X2 DIAGONAL BLOCKS, THIS SUBROUTINE
C REORDERS THE DIAGONAL BLOCKS ALONG WITH THE GENERALIZED
C EIGENVALUES CORRESPONDING TO THE REGULAR MATRIX PENCIL
C A - LAMBDA'B BY CONSTRUCTING ROW AND COLUMN EQUIVALENCE
C TRANSFORMATIONS QT AND ZT. THE COLUMN TRANSFORMATIONS ARE
C THEN APPLIED TO THE MATRIX Z.
C REF.: VAN DOOREN, P., A GENERALIZED EIGENVALUE APPROACH FOR
C SOLVING RICCATI EQUATIONS, SIAM J. SCI. STAT. COMPUT.,
C VOL. 2, NO. 2, JUNE 1981, 121-135.
C
C ""'PARAMETER DESCRIPTION:
C
C ON INPUT:
C
C NMAX INTEGER
C ROW DIMENSION OF THE ARRAYS CONTAINING A,B,Z AS
C DECLARED IN THE MAIN CALLING PROGRAM DIMENSION
C STATEMENT;
C
C N INTEGER
C ORDER OF THE MATRICES A,B,Z;

C
C A REAL(NMAX,N)
C UPPER HESSENBERG MATRIX WITH IXi OR 2X2 DIAGONAL
C BLOCKS. ELEMENTS OUTSIDE THE UPPER HESSENBERG
C STRUCTURE ARE ARBITRARY;
C
C B REAL(NMAX,N)
C UPPER TRIANGULAR MATRIX. ELEMENTS OUTSIDE THE
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C UPPER TRIANGULAR STRUCTURE ARE ARBITRARY;
C
C EPS REAL
C REQUIRED ABSOLUTE ACCURACY OF THE RESULTS.
C NORMALLY EQUAL TO THE MACHINE PRECISION;
C
C TYPE LOGICAL
C CONTROL PARAMETER THAT SPECIFIES THE REGIONS OF THE
C THE COMPLEX PLANE THAT THE GENERALIZED EIGENVALUES
C ARE ORDERED BY. TO CONTROL THE REGION THAT APPEARS
C FIRST, SEE IFIRST BELOW
C = .TRUE. GENERALIZED EIGENVALUES ARE ORDERED BY
C REGION INSIDE THE COMPLEX LEFT HALF PLANE OR
C OUTSIDE THIS REGION
C = .FALSE. GENERALIZED EIGENVALUES ORDERED BY REGION
C INSIDE THE UNIT CIRCLE OR OUTSIDE THIS REGION;
C
C IFIRST INTEGER
C CONTROL PARAMETER THAT SPECIFIES WHICH OF THE
C REGIONS SPECIFIED BY TYPE(SEE ABOVE) APPEARS FIRST
C (I.E. IN THE UPPER LEFT NXN BLOCK)C = -1 INSIDE REGION APPEARS FIRST
C = +1 OUTSIDE REGION APPEARS FIRST

C IFIRST IS ALTERED BY THIS SUBROUTINE;
C
C IND INTEGER(N)
C WORKING ARRAY THAT IS ALTERED BY THIS SUBROUTINE.
C
C ON OUTPUT:
C
C A,B UPPER HESSENBERG MATRIX, UPPER TRIANGULAR MATRIX
C REORDERED AS SPECIFIED BY TYPE AND IFIRST(ABOVE);
C
C Z REAL(NMAX,N)
C THIS ARRAY IS OVERWRITTEN BY THE PRODUCT OF THE
C CONTENTS OF THE ARRAY Z(UPON ENTRY INTO THIS
C SUBROUTINE), AND THE COLUMN TRANSFORMATIONS ZT
C (CALCULATED BY THIS SUBROUTINE);
C
C IFAIL INTEGER
C ERROR FLAG
C = 1 INDICATES ATTEMPTED REORDERING FAILED
C = 0 NORMAL RETURN.
C
C ****ALGORITHM NOTES:
C NONE.
C
C ***HISTORY:
C ORIGINAL VERSION THAT SORTED BY UNIT CIRCLE REGION OF COMPLEX
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C PLANE WRITTEN BY P. VAN DOOREN("A GENERALIZED EIGENVALUE
C APPROACH FOR SOLVING RICCATI EQUATIONS", INTERNAL REPORT
C NA-80-02, DEPT. OF COMPUTER SCIENCE, STANFORD UNIVERSITY,

- C 1980). THIS VERSION MODIFIED BY W. F. ARNOLD(DEPT. OF
C ELECTRICAL ENGINEERING - SYSTEMS, UNIV. OF SOUTHERN CALIF.,
C LOS ANGELES, CA 90089) TO INCLUDE THE SORTING CONTROL
C PARAMETER "TYPE", SEPT 1982.
C
C------------------ ---------------------
C
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SUBROUTINE LYPCND(NF,NHNFH.Z,WRWI,WK,IER1 ,IER2)
C

C ****PARAMETERS:
INTEGER NFNH,N,IER1.IER2
DOUBLE PRECISION F(NF,N),H(NHN),Z(NF.N).WR(N),WI(N)',WK(N)

C
C *'**LOCAL VARIABLES:

INTEGER LOWIGH
*C

C ****SUBROUTINES CALLED:
C ORTHES, ORTRAN,HQRORT ,MQFWO(MULWOA) ,SYMSLV (LINEQ, DGECOM, DGESLM)
C TRNATA
C
C
C
C *****PURPOSE:
C THIS SUBROUTINE SOLVES THE CONTINUOUS TIME LYAPUNOV EQUATION
C
C T
C F *X + X*F + H = O.
C
C BY THE BARTELS-STEWART ALGORITHM (SEE REF.()).
C
C ***1 PARAMETER DESCRIPTION:
C

#., C ON INPUT:
C
C NFNH ROW DIMENSIONS OF THE ARRAYS CONTAINING F
C (AND Z),H, RESPECTIVELY, AS DECLARED IN
C MAIN CALLING PROGRAM DIMENSION STATEMENT;
C
C N ORDER OF THE MATRICES F AND H;

*C
C F N X N (REAL) MATRIX;
C
C H N X N SYMMETRIC MATRIX;
C
C IERI INTEGER VARIABLE; NORMALLY SET IERI TO 0;
C IF IERi IS SET TO A NON-ZERO INTEGER, THE
C REDUCTION OF F TO REAL SCHUR FORM IS,
C SKIPPED AND THE ARRAYS F AND Z ARE ASSUMED
C TO CONTAIN THE REAL SCHUR FORM AND
C ACCOMPANYING ORTHOGONAL MATRIX THUS
C PERMITTING MORE EFFICIENT SOLUTION OF
C SEVERAL EQUATIONS WITH DIFFERENT CONSTANT
C TERMS H;
C
C IER2 INTEGER VARIABLE; NORMALLY SET IER2 TO 0;
C IF ONLY A REAL SCHUR FORM OF F AND
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C ASSOCIATED ORTHOGONAL SIMILARITY MATRIX Z
C ARE DESIRED SET IER2 TO A NON-ZERO
C INTEGER.
C
C ON OUTPUT:
C
C H N X N ARRAY CONTAINING THE (SYMMETRIC)
C SOLUTION X OF THE LYAPUNOV EQUATION;
C
C F N X N ARRAY CONTAINING IN ITS UPPER
C TRIANGLE AND FIRST SUBDIAGONAL A REAL
C SCHUR FORM OF F;
C
C Z N X N ARRAY CONTAINING, ON OUTPUT, THE
C ORTHOGONAL MATRIX THAT REDUCES F TO REAL
C SCHUR FORM;
C
C WR REAL SCRATCH VECTOR OF LENGTH N; ON OUTPUT
C (WR(I),Iz1,N) CONTAINS THE REAL PARTS OF
C THE EIGENVALUES OF F AND THUS CAN BE USED
C TO TEST THE STABILITY OF F;
C
C WI REAL SCRATCH VECTOR OF LENGTH N; ON OUTPUT
C CONTAINS THE IMAGINARY PARTS OF THE
C EIGENVALUES OF F;
C
C WK REAL SCRATCH VECTOR OF LENGTH N;

~c
C IER1 =0 FOR NORMAL RETURN (IF =0 ON INPUT),

C =J IF THE J-TH EIGENVALUE HAS NOT BEEN
C DETERMINED IN THE QR ALGORITHM (IF =0 ON
C INPUT).
C
C *****ALGORITHM NOTES:
C IT IS ASSUMED THAT F HAS NO EIGENVALUES WHICH SUM TO ZERO (THIS
C CAN BE CHECKED FROM THE ARRAY WR). THIS IS SUFFICIENT TO
C GUARANTEE A UNIQUE SOLUTION.
C IF, MOREOVER, F IS STABLE THEN X IS NONNEGATIVE DEFINITE.
C
C *****REFERENCES:
C (1) BARTELS, R.H., AND G.W. STEWART, SOLUTION
C OF THE MATRIX EQUATION AX + XB = C,
C ALGORITHM 432, COMM. ACM, 15(1972),820-826.
C
C ****#HISTORY:
C WRITTEN BY ALAN J. LAUB (DEP'T. OF EE-SYSTEMS, U. OF SOUTHERN

C CALIF.. LOS ANGELES, CA 90089, PH.: (213) 743-5535) SEP. 1977
C MOST RECENT VERSION: JUNE 28, 1982.
C
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SUBROUTINE LYPDSD(NF,NH,N,F,HZ,WR,WI,WKU,IDI,IERIIER2)
C
C *****PARAMETERS:

INTEGER NFNH,N,IERI,IER2,IDIM(N)
DOUBLE PRECISION F(NFN),U(NF,N),H(NH,N),Z(NF,N),WR.(N),WI(N),
x WK(N)

C
C ****LOCAL VARIABLES:

INTEGER LOW,IGH,KIN,KOUT
c
C ****SUBROUTINES CALLED:
C ORTHESORTRAN,HQRORT,MQFWO(MULWOA),DSTSLV(LINEQ,DDCOMP,DSOLVE)
C TRNATA
C
C
C
C *****PURPOSE:
C THIS SUBROUTINE SOLVES THE DISCRETE TIME LYAPUNOV EQUATION
C
C T
C F *X*F- X = H.
C
C BY A MODIFICATION OF THE BARTELS-STEWART ALGORITHM (SEE REFS.
C (1) AND (2)).
C
C *****PARAMETER DESCRIPTION:
C ON INPUT:
C
C (AND Z,U),AND H ,RESPECTIVELY, AS DECLARED
C IN THE CALLING PROGRAM DIMENSION STATEMENT;
C
C N ORDER OF THE MATRICES F AND C;
C
C F N X N (REAL) MATRIX;
C
C H N X N SYMMETRIC MATRIX;
C
C IER1 INTEGER VARIABLE; NORMALLY SET IERI TO 0;
C IF IERI IS SET TO A NON-ZERO INTEGER, THE
C REDUCTION OF F TO REAL SCHUR FORM IS,
C SKIPPED AND THE ARRAYS F AND Z ARE ASSUMED
C TO CONTAIN THE REAL SCHUR FORM AND
C ACCOMPANYING ORTHOGONAL MATRIX THUS
C PERMITTING MORE EFFICIENT SOLUTION OF
C SEVERAL EQUATIONS WITH DIFFERENT CONSTANT
C TERMS H;
C
C IER2 INTEGER VARIABLE; NORMALLY SET IER2 TO 0;
C IF ONLY A REAL SCHUR FORM OF F AND
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C ASSOCIATED ORTHOGONAL SIMILARITY MATRIX Z
C ARE DESIRED SET IER2 TO A NON-ZERO
C INTEGER.
C
C ON OUTPUT:
C
C H N X N ARRAY CONTAINING THE (SYMMETRIC)
C SOLUTION X OF THE LYAPUNOV EQUATION;
C
C F N X N ARRAY CONTAINING IN ITS UPPER

." C TRIANGLE AND FIRST SUBDIAGONAL A REAL
C SCHUR FORM OF F;
C
C Z N X N ARRAY CONTAINING, ON OUTPUT, THE
C ORTHOGONAL MATRIX THAT REDUCES F TO REAL
C SCHUR FORM;
C
C WR REAL SCRATCH VECTOR OF LENGTH N; ON OUTPUT
C (WR(I),I=l,N) CONTAINS THE REAL PARTS OF
C THE EIGENVALUES OF F AND THUS CAN BE USED
C TO TEST THE STABILITY OF F;
C
C WI REAL SCRATCH VECTOR OF LENGTH N; ON OUTPUT
C CONTAINS THE IMAGINARY PART OF THE
C EIGENVALUES OF F;
C
C WK REAL SCRATCH VECTOR OF LENGTH N;
C
C U N X N REAL SCRATCH ARRAY;
C
C IDIM INTEGER SCRATCH VECTOR OF LENGTH N;
C
C IERI -0 FOR NORMAL RETURN (IF =0 ON INPUT),ji C =J IF THE J-TH EIGENVALUE HAS NOT BEEN
C DETERMINED IN THE QR ALGORITHM (IF =0 ON
C INPUT).
C

1.. C ****ALGORITHM NOTES:
C IT IS ASSUMED THAT F HAS NO EIGENVALUES WITH PRODUCT EQUAL TO

S'. C ZERO (THIS CAN BE CHECKED FROM THE ARRAY WR). THIS IS
C SUFFICIENT TO GUARANTEE A UNIQUE SOLUTION.
C IF, MOREOVER, F IS STABLE THEN X IS NONNEGATIVE DEFINITE.
C
S-*C "*REFERENCES:
C (1) BARTELS, R.H., AND G'.W. STEWART, SOLUTION
C OF THE MATRIX EQUATION AX + XB = C,
C ALGORITHM 432, COMM. ACM, 15(1972),820-826.
C T

3- C (2) BARRAUD,A.Y., A NUMERICAL ALGORITHM TO SOLVE A XA-X=Q,
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C IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-22,
C NO.5, OCTOBER 1977,883-885.

m'. CI C ****HISTORY:
C WRITTEN BY J.A.K. CARRIG (ELEC. SYS. LAB., M.I.T., R:M 35-427,
C CAMBRIDGE, MA 02139, PH.: (617) 653-7263, SEPTEMBER 1978.
C MOST RECENT VERSION: SEPT. 20, 1978.
C

C
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SUBROUTINE SEPEST(NR,N,T,Q,SEP,INFO)
C
C ****PARAMETERS:

INTEGER NRNIINFO
DOUBLE PRECISION T(NR,N),Q(NR,N),SEP

C
C *****LOCAL VARIABLES:

INTEGER IPVT(4),I,II,IM1,JJP1,K1,K2,KIM1,L1,L2,L1M1,L1MK1,
X MND,NM1
DOUBLE PRECISION A(4,4),VEC(44,Z(4),A1N,RCOND,STEMP,T1N

C
C *'**FORTRAN FUNCTIONS:

DOUBLE PRECISION DABS,DMAX1,DMIN1,ISIGN
C
C *****FUNCTION SUBPROGRAMS:

DOUBLE PRECISION D1NRM
C
C *****SUBROUTINES CALLED:
C DGECOM, DGESLM, MSCALE, SY1SLV
C
C
C

C ****PURPOSE:
C GIVEN A QUASITRIANGULAR MATRIX T AND A SYMMETRIC MATRIX Q,
C THIS SUBROUTINE COMPUTES
C
C SEP = MIN( 1-NORM( T-TRANSPOSEQ + Q*T)/ 1-NORM(Q))
C
C REF.: BARTELS, R.H. AND G.W. STEWART, "SOLUTION OF THE MATRIX
C EQUATION A*X + X*B = C," COMM. OF THE ACM, VOL. 15,
C PP. 820-826, 1972.
C CLINE, A.K., MOLER, C.B., STEWART, G.W. AND J.H. WILKINSON,
C "AN ESTIMATE OF THE CONDITION NUMBER OF A MATRIX," SIAM J. OF
C NUMERICAL ANALYSIS, VOL. 16, PP. 368-375, 1979.
C
C *****PARAMETER DESCRIPTION:
C
C ON INPUT:
C
C NR INTEGER
C ROW DIMENSION OF THE ARRAYS CONTAINING THE MATRICES
C T AND Q AS DECLARED IN THE MAIN CALLING PROGRAM
C DIMENSION STATEMENT;
C
C N INTEGER
C ORDER OF THE SQUARE MATRICES Q AND T;
C
C T REAL(NRN)
C QUASITRIANGULAR INPUT MATRIX.
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C
C ON OUTPUT:
C
C SEP REAL
C AN ESTIMATE OF THE QUANTITY SPECIFIED ABOVE;
C
C Q REAL(HR,N)
C THE MATRIX THAT MINIMIZES THE QUANTITY SEP;
C
C INFO INTEGER
C ERROR FLAG WITH THE FOLLOWING MEANINGS
C = 0 INDICATES NORMAL RETURN
C z (N*I)OLAK INDICATES THE L-TH AND K-TH EIGENVALUES
C OF T FORM A +/- PAIR, SO SEP IS EQUAL TO ZERO.
C
C * ALGORITHM NOTES:
C T
C LET PHI(Y) = TOY + Y*T . Q IS OBTAINED BY INVERSE ITERATION ON
C T
C PHI*PHI . THE STARTING VALUE OF Q IS CHOSEN AS FOLLOWS:
C PARTITION ALL MATRICES CONFORMALLY WITH T. Q IS CHOSEN TO
C SATISFY
C T T
C TrY + Y'T = B, T OQ + Q T.- Y/1-NORM(Y).
C
C *****HISTORY:
C THIS SUBROUTINE IS A MODIFIED VERSION OF THE SUBROUTINE OF THE
C SAME NAME WRITTEN BY RALPH BEYERS, 2/82 REF.: BEYERS, R.,
C "HAMILTONIAN AND SYMPLECTIC ALGORITHMS FOR THE ALGEBRAIC
C RICCATI EQUATION," PHD THESIS, CORNELL UNIVERSITY, PP.289-295,
C JANUARY 1983. THE MODIFICATIONS WERE MADE BY W.F. ARNOLD,
C NAVAL WEAPONS CENTER, CODE 35104, CHINA LAKE, CA 93555, AS
C PART OF THE SOFTWARE PACKAGE RICPACK, SEPTEMBER 1983.
C
C ------------------ -----
C
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SUBROUTINE FBGAIN (NR,NRX,NRWN,M,A,B,E,RRI,SX,FB,W,WKIPVT,
X EFLAG.RDFLGRFLAGSFLAGTYPE)

C
C *****PARAMETERS:

INTEGER NRNRX,NRWN,M,IPVT(N)
CHARACTER EFLAGRDFLG,RFLAGSFLAG
DOUBLE PRECISION A(NRN),B(NR.M),E(NR,N),R(NR,M),RI(NRM),
X S(NR,M),X(NRX,N),FB(NRW,N),W(NRWN),WK(N)
LOGICAL TYPE

C
C *****LOCAL VARIABLES:

INTEGER IJ
DOUBLE PRECISION COND

C
C *****FORTRAN FUNCTIONS:
C NONE.
C
C ****SUBROUTINES CALLED:
C MADD, MLINEQ, MMUL, MULA, MULB. TRNATA, TRNATB
C
C
C
C ****PURPOSE:
C GIVEN THE RICCATI SOLUTION AND THE MODEL MATRICES OF THE
C OPTIMAL CONTROL PROBLEM, THIS SUBROUTINE CALCULATES THE
C OPTIMAL FEEDBACK GAIN MATRIX FOR THE GENERALIZED CONTINUOUS-
C OR DISCRETE-TIME OPTIMAL CONTROL PROBLEM.
C
C CONTINUOUS: FB = RI'(BT'XOE + ST)
C
C DISCRETE: FE = ((R + BT*X*B)*"-1)*(BT'XOA + ST)
C
C WHERE T DENOTES THE MATRIX TRANSPOSE.CI
C REF.: ARNOLD, W.F., "ON THE NUMERICAL SOLUTION OF
C ALGEBRAIC MATRIX RICCATI EQUATIONS," PHD THESIS. USC,
C DECEMBER 1983.
C
C *****PARAMETER DESCRIPTION:
C I
C ON INPUT:

C
C NR INTEGER
C ROW DIMENSION OF THE ARRAYS CONTAINING
C A, B, E. R, RI AND S AS DECLARED IN THE MAIN
C CALLING PROGRAM DIMENSION STATEMENT;
C
C NRX INTEGER

C ROW DIMENSION OF THE ARRAY CONTAINING X AS DECLARED
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C IN THE MAIN CALLING PROGRAM DIMENSION STATEMENT;
C
C NRW INTEGER
C ROW DIMENSION OF THE ARRAYS CONTAINING FB AND W AS
C DECLARED IN THE MAIN PROGRAM DIMENSION STATEMENT;
C
C N INTEGER
C ORDER OF THE SQUARE MATRICES A, E, AND X
C ROW DIMENSION OF THE MATRICES B, S, AND FB;
C
C M INTEGER
C ORDER OF THE SQUARE MATRICES R AND RI
C COLUMN DIMENSION OF THE MATRICES B AND S;
C
C A REAL(NRN)
C MODEL SYSTEM MATRIX;
C
C B REAL(NRM)
C MODEL INPUT MATRIX;
C
C E REAL(NR,N)
C MODEL DESCRIPTOR MATRIX;
C
C R REAL(MR,M)
C INPUT WEIGHTING MATRIX;
C
C RI REAL(NR,M)
C INVERSE OF THE INPUT WEIGHTING MATRIX;
C
C S REAL(NR,M)
C STATE - INPUT CROSS-WEIGHTING MATRIX;
C
C X REAL(NRX,N)
C ALGEBRAIC RICCATI EQUATION SOLUTION MATRIX;
C
C W REAL(NRWN)
C SCRATCH ARRAY OF SIZE AT LEAST N BY N;
C
C WK REAL(N)
C WORKING VECTOR OF LENGTH AT LEAST N;
C

- C IPVT INTEGER(M)
C WORKING VECTOR OF LENGTH AT LEAST M;
C
C EFLAG CHARACTER
C FLAG SET TO 'Y' IF E IS OTHER THAN THE IDENTITY
C MATRIX;
C
C RDFLG CHARACTER
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C FLAG SET TO 'Y' IF R IS A DIAGONAL MATRIX;
C
C RFLAG CHARACTER
C FLAG SET TO 'Y' IF R IS OTHER THAN THE IDENTITY
C MATRIX;
C
C SFLAG CHARACTER
C FLAG SET TO 'Y' IF S IS OTHER THAN THE ZERO MATRIX;
C
C TYPE LOGICAL
C = .TRUE. FOR CONTINUOUS-TIME SYSTEM
C = .FALSE. FOR DISCRETE-TIME SYSTEM.
C
C ON OUTPUT:
C
C FB REAL(NRWN)
C OPTIMAL FEEDBACK GAIN MATRIX AS DESCRIBED ABOVE;
C
C WK(1) ESTIMATED CONDITION NUMBER OF R+BT*X*B WITH RESPECT
C TO INVERSION (DISCRETE PROBLEM).
C
C ****ALGORITHM NOTES:
C NONE.
C
C ***HISTORY:
C THIS SUBROUTINE WAS WRITTEN BY W.F. ARNOLD, NAVAL WEAPONS
C CENTER, CODE 35104, CHINA LAKE, CA 93555, AS PART OF THE
C SOFTWARE PACKAGE RICPACK, SEPTEMBER 1983.
C:€_. C

C
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SUBROUTINE CMPRS(NR,NRD,NRT,N,NN.NNPMM,E,A,BCQCR,SG,FU,

X WK,WK1 ,WK2,WK3,EFLAGSFLAG,IBALINFO)

C *****PARAMETERS:
INTEGER NR,NRD,NRTN,NN,NNPM,M,IBAL,INFO
CHARACTER EFLAG, SFLAG
DOUBLE PRECISION E(NRN),A(NRN),B(NR,M),CQC(NR,N),
X R(NR,M),S(NR,M),G(NRD,NN),F(NRD,NN),U(NRT,NNPM),
X WK(NRT,M) ,WK1 (M) ,WK2(M) ,WK3(NNPM)

C

C ***LOCAL VARIABLES:
INTEGER I,J,JOB,KNNPINPI,NPJ,NPK

C
C *****FORTRAN FUNCTIONS:
C NONE.
C
C *****SUBROUTINES CALLED:
C DSVDC
C
C
C
C *****PURPOSE:
C THIS SUBROUTINE EMPLOYS THE SINGULAR VALUE DECOMPOSITION TO
C DETERMINE AN ORTHOGONAL MATRIX U, (2N+M) BY (2N+M), SUCH THAT
C
C
C ( ( )0B) (0)
C ( Ull C U12 ) ( ) C )
C C C ) (-5) = (0)
C (-....(-...) (--)
C (U21 U22) CR) (RB)
C
C AND THEN FORMS THE MATRIX PENCIL

C

C CEo) C C A 0)
C LAMBDA*U11*( ) - C Ul1'( ) + U12*(ST BT) )
C 0 ET) ( (-CQC -AT)
C
C =: LAMBDA F -G
C
C WHERE T DENOTES MATRIX TRANSPOSE.
C THIS PENCIL CAN THEN BE USED FOR SOLVING THE CONTINUOUS-TIME
C GARE.
C
C REF.: ARNOLD, W.F., "ON THE NUMERICAL SOLUTION OF
C ALGEBRAIC MATRIX RICCATI EQUATIONS," PHD THESIS, USC,
C DECEMBER 1983.
C 04

C ****#PARAMETER DESCRIPTION:
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c ON INPUT:
C

C NR INTEGER
C ROW DIMENSION OF THE ARRAYS CONTAINING THE HATRICES
C E, A, B, CQC, R AND S AS DECLARED IN THE MAIN
C CALLING PROGRAM DIMENSION STATEMENT;
C
C NRD INTEGER

C ROW DIMENSION OF THE ARRAYS CONTAINING THE MATRICES
C G AND F AS DECLARED IN THE MAIN CALLING PROGRAM
C DIMENSION STATEMENT;
C
C NRT INTEGER
C ROW DIMENSION OF THE ARRAYS CONTAINING THE MATRICES
C U AND WK AS DECLARED IN THE MAIN CALLING PROGRAM
C DIMENSION STATEMENT;
C
C N INTEGER
C ORDER OF THE SQUARE MATRICES E, A AND CQC
C ROW DIMENSION OF THE MATRICES B AND S;
C
C NN INTEGER
C ORDER OF THE SQUARE MATRICES G AND F;
C
C NNPM INTEGER
C =NN M;
C
C M INTEGER
C ORDER OF THE SQUARE MATRIX R
C COLUMN DIMENSION OF THE MATRICES B AND S;
C
C E REAL(NR,N)
C MODEL DESCRIPTOR MATRIX;
C
C A REAL(NR,N)
C MODEL SYSTEM MATRIX;
C
C B REAL(NR,M)
C MODEL INPUT MATRIX;
C
C CQC REAL(NR,N)
C MATRIX PRODUCT CT*Q*C WHERE T DENOTES MATRIX
C TRANSPOSE;
C
C R REAL(MR,M)
C CONTROL WEIGHTING MATRIX;
C
C S REAL(NR,M)

151

I, ., .m"a"t " "J " °, . j '. , . ' ' '* . - • •" - - - ." ',' " " '. , ,- - - ' ' ". . . ', - . - . . ,'. -



, ,.. . _,, : - . - - - -, , ._ ,.,- . . ---. = , . * , -.. *,! - -.- . . _ - ... ,

NWC TP 6521

C STATE - INPUT CROSS-WEIGHTING MATRIX;
C
C WK REAL(NRT,M)
C SCRATCH ARRAY OF SIZE AT LEAST (NN+M) BY M;
C
C WK1,WK2 REAL(M)
C WORKING VECTORS OF SIZE AT LEAST M;
C
c WK3 REAL(NNPM)
C WORKING VECTOR OF SIZE AT LEAST NN+M;
C
C EFLAG CHARACTER
C FLAG SET TO 'Y' IF E IS OTHER THAN THE IDENTITY
C MATRIX;
C
C SFLAG CHARACTER
C FLAG SET TO 'Y' IF S IS OTHER THAN THE ZERO MATRIX;
C
C IBAL INTEGER
C PARAMETER SET TO 1 IF CO-ORDINATE BALANCING IS
C BEING USED.
C
C ON OUTPUT:
C
C G REAL(NRD,UN)
C MATRIX OF THE COMPRESSED PENCIL AS DEFINED ABOVE;
C
C F REAL(NRD,NN)
C MATRIX OF THE COMPRESSED PENCIL AS DEFINED ABOVE;
C
C U REAL(NRT,NNPM)
C ORTHOGONAL COMPRESSION MATRIX AS DEFINED ABOVE;
C
C INFO INTEGER

C ERROR FLAG WITH MEANING AS FOLLOWS
C = 0 NORMAL RETURN
C = NONZERO IF SINGULAR VALUE DECOMPOSITION COULD
C NOT BE CALCULATED.
C
C **'ALGORITHM NOTES:

C NONE.

C
C ****HISTORY:
C THIS SUBROUTINE WAS WRITTEN BY W.F. ARNOLD, NAVAL; WEAPONS
C CENTER, CODE 35104, CHINA LAKE, CA 93555, AS PART OF THE
C SOFTWARE PACKAGE RICPACK, SEPTEMBER 1983.
C
C ---------- --------- - -

C
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SUBROUTINE RINV(NR,NRD,N,NN,M,E,A,BCQC,RI,G,F,WK1 ,WRK,RDFLG,
X RFLAGEFLAGIBALTYPE)

C
C *'*'PARAMETERS:

INTEGER NR,NRDN,NN,M,IBAL
CHARACTER RDFLG, RFLAG, EFLAG
DOUBLE PRECISION E(NR,N),A(NRN),B(NR,M),CQC(NR,N),RI(NR,M),
X G(NRD,NN).F(NRD,NN),WK1(NR,N),WRK(N)
LOGICAL TYPE

C
C ****LOCAL VARIABLES:

INTEGER I,J,K,NPINPJ
C
C *****FORTRAN FUNCTIONS:
C NONE.
C
C ****SUBROUTINES CALLED:
C MULB, TRNATB
C
C
C
C *****PURPOSE:
C THIS SUBROUTINE FORMS THE MATRIX PENCIL:
C
C CE 0) ( A -B'RI*BT)
C LAMBDA*( ) - ( )
C (0 ET) (-CQC -AT )
C
C :: LAMBDA F - G
C
C WHERE T DENOTES MATRIX TRANSPOSE.
C THIS SUBROUTINE IS USEFUL IN SOLVING THE CONTINUOUS-TIME GARE.
C
C REF.: ARNOLD, W.F., "ON THE NUMERICAL SOLUTION OF
C ALGEBRAIC MATRIX RICCATI EQUATIONS," PHD THESIS, USC,
C DECEMBER 1983.
C
C ****PARAMETER DESCRIPTION:
C

, C ON INPUT:
C
C NR INTEGER
C ROW DIMENSION OF THE ARRAYS CONTAINING THE MATRICES
C E, A, B, CQC, RI AND WK1 AS DECLARED IN THE MAIN
C CALLING PROGRAM DIMENSION STATEMENT;
C
C NRD INTEGER
C ROW DIMENSION OF THE ARRAYS CONTAINING THE MATRICES
C F AND G AS DECLARED IN THE MAIN CALLING PROGRAM
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C DIMENSION STATEMENT;
C
C N INTEGER
C ORDER OF THE SQUARE MATRICES E, A AND CQC
C ROW DIMENSION OF THE MATRIX B;
C
C NN INTEGER
C SIZE OF THE MATRIX PENCIL;
C
C M INTEGER
C ORDER OF THE SQUARE MATRIX RI
C COLUMN DIMENSION OF THE MATRIX B;
C
C E REAL(NR,N)
C MODEL DESCRIPTOR MATRIX;
C
C A REAL(NR,N)
C A - B*RI*ST IN THE GENERALIZED CASE;
C
C B REAL(NR,M)
C MODEL INPUT MATRIX;
C
C CQC REAL(NR,N)
C = CT*QC - S*RI*ST IN THE GENERALIZED CASE;
C
C RI REAL(NR,M)
C INVERSE OF THE CONTROL WEIGHTING MATRIX;
C
C WK1 REAL(NR,N)
C SCRATCH ARRAY OF SIZE AT LEAST M BY N;
C
C WRK REAL(N)
C WORKING VECTOR OF SIZE AT LEAST N;
C
C RDFLG CHARACTER
C FLAG SET TO 'Y' IF RI IS A DIAGONAL MATRIX;
C
C RFLAG CHARACTER
C FLAG SET TO 'Y' IF RI IS OTHER THAN THE IDENTITY
C MATRIX;
C
C EFLAG CHARACTER
C FLAG SET TO 'Y' IF E IS OTHER THAN THE .IDENTITY
C MATRIX;
C
C IBAL INTEGER
C 1 IF CO-ORDINATE BALANCING IS BEING USED"
C
C TYPE LOGICAL
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C = .TRUE. FOR CONTINUOUS-TIME SYSTEM
C z.FALSE. FOR DISCRETE-TIME SYSTEM.
C
C ON OUTPUT:
C
C G REAL(NRD,NN)
C PENCIL MATRIX AS DEFINED ABOVE;
C
C F REAL(NRDNN)
C PENCIL MATRIX AS DEFINED ABOVE.
C
C 0*~*OALGORITH4 NOTES:
C NONE.
C
C *****HISTORY:
C THIS SUBROUTINE WAS WRITTEN BY W.F. ARNOLD, NAVAL WEAPONS
C CENTER, CODE 35104, CHINA LAKE, CA 93555, AS PART OF THE
C SOFTWARE PACKAGE RICPACK, SEPTEMBER 1983.
C

C
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SUBROUTINE RESID(NR,NRR,NRW,NRX,N,M,E,AB,CQC,R,S,RI,RSDM,X,W,
X W2,WK,IPVTRTOL,EFLAG,RFLAGRDFLGSFLAG,RSD,
X TYPE,NOUT)

C

C *****PARAMETERS:
INTEGER NR,NRRNRW,NRX, N,MIPVT(N),NOUT
CHARACTER EFLAG, RFLAG, RDFLG, SFLAG
DOUBLE PRECISION E(NR,N),A(NRN),B(NRM),CQC(NRN),R(NRM),
X S(NR,M),RI(NRM),RSDM(NRRN),X(NRX,N),W1(NRW,N),W2(NRW,N),
X WK(N),RTOL,RSD
LOGICAL TYPE

C
C ****LOCAL VARIABLES:

INTEGER I
DOUBLE PRECISION COND

C
C ****FORTRAN FUNCTIONS:
C NONE.
C
C ""'**FUNCTION SUBPROGRAMS:

DOUBLE PRECISION D1NRM
C
C *****SUBROUTINES CALLED:
C MADD, MLINEQ, MMUL, MQF, MSUB, MULA, TRNATB
C
C
C
C *****PURPOSE:
C THIS SUBROUTINE CALCULATES THE RESIDUAL MATRIX AND ITS 1-NORM
C FOR THE GARE AS FOLLOWS:
C
C CONTINUOUS:
C
C RSDM = AT'X'E + ET'X'A - (BT0X'E+ST)T*RI'(BT'X*E+ST) + CQC
C
C
C DISCRETE:
C
C RSDM = AT'X*A - ET'X0E + CQC
C - (BT'X'A.ST)T'( (R.BTXB)*-1 )'(BTXA+ST)
C
C
C WHERE T DENOTES MATRIX TRANSPOSE.
C
C REF.: ARNOLD, W.F., "ON THE NUMERICAL SOLUTION OF
C ALGEBRAIC MATRIX RICCATI EQUATIONS," PHD THESIS, USC,
C DECEMBER 1983.
C
C ****PARAMETER DESCRIPTION:
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C
C ON INPUT:
C
C NR INTEGER
C ROW DIMENSION OF THE ARRAYS CONTAINING THE MATRICES
C E, A, B, CQC, R. RI AND S AS DECLARED IN THE MAIN
C CALLING PROGRAM DIMENSION STATEMENT;
C
C NRR INTEGER
C ROW DIMENSION OF THE ARRAY CONTAINING THE MATRIX
C RSDM AS DECLARED IN THE MAIN CALLING PROGRAM
C DIMENSION STATEMENT;
C
C NRW INTEGER
C ROW DIMENSION OF THE ARRAYS CONTAINING THE MATRICES
C Wl AND W2 AS DECLARED IN THE MAIN CALLING PROGRAM
C DIMENSION STATEMENT;
C
C NRX INTEGER
C ROW DIMENSION OF THE ARRAY CONTAINING THE MATRIX X
C AS DECLARED IN THE MAIN CALLING PROGRAM DIMENSION
C STATEMENT;
C
C N INTEGER
C ORDER OF THE SQUARE MATRICES E, A, CQC, RSDM AND X
C ROW DIMENSION OF THE MATRICES B AND S;
C
C M INTEGER
C ORDER OF THE SQUARE MATRICES R AND RI
C COLUMN DIMENSION OF THE MATRICES B AND S;
C
C E REAL(NR,N)
C MODEL DESCRIPTOR MATRIX;
C
C A REAL(MR,N)
C MODEL SYSTEM MATRIX;
C
C B REAL(NR,M)
C MODEL INPUT MATRIX;
C
C CQC REAL(MR,N)
C MATRIX PRODUCT CT*QC WHERE T DENOTES MATRIX
C TRANSPOSE;
C
C R REAL(NR,M)
C CONTROL WEIGHTING MATRIX;
C
C S REAL(NR,M)
C STATE - INPUT CROSS-WEIGHTING MATRIX;
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C
C RI REAL(NRM)
C INVERSE OF THE CONTROL WEIGHTING MATRIX;
C
C X REAL(NRX,N)
C SOLUTION MATRIX FOR THE GARE WHOSE RESIDUAL IS TO BE
C DETERMINED;
C
C WlW2 REAL(NRW, N)
C SCRATCH ARRAYS OF SIZE AT LEAST N BY N;
C
C WK REAL(N)
C WORK VECTOR OF LENGTH AT LEAST N;
C
C IPVT INTEGER(N)
C WORK VECTOR OF LENGTH AT LEAST N;
C
C RTOL REAL
C TOLERANCE ON THE CONDITION ESTIMATE OF R+BT*X*B WITH
C RESPECT TO INVERSION (DISCRETE PROBLEM). IF THIS
C TOLERANCE IS EXCEEDED AN ERROR MESSAGE IS PRINTED
C AND AN ERROR RETURN IS MADE;
C
C EFLAG CHARACTER
C FLAG SET TO 'Y' IF E IS OTHER THAN THE IDENTITY
C MATRIX;

C RFLAG CHARACTER
C FLAG SET TO 'Y' IF R IS OTHER THAN THE IDENTITY
C MATRIX;

C RDFLG CHARACTER
C FLAG SET TO 'Y' IF R IS A DIAGONAL MATRIX;
C
C SFLAG CHARACTER
C FLAG SET TO 'Y' IF S IS OTHER THAN THE ZERO MATRIX;
C
C TYPE LOGICAL
C x.TRUE. FOR CONTINUOUS-TIME SYSTEM
C = .FALSE. FOR DISCRETE-TIME SYSTEM;
C
C NOUT INTEGER
C UNIT NUMBER OF OUTPUT DEVICE FOR ERROR WARNING
C MESSAGES.
C
C ON OUTPUT:
C
C RSDM REAL(NRR.N)
C THE RESIDUAL MATRIX CALCULATED AS INDICATED ABOVE;
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C
C IPVT(1) ERROR FLAG AS FOLLOWS
C = 0 NORMAL RETURN
C a 1 THE CONDITION ESTIMATE OF R+BT'XOB WITH RESPECT
C TO INVERSION EXCEEDS THE TOLERANCE RTOL;
C
C RSD REAL
C THE 1-NORM OF THE RESIDUAL MATRIX DIVIDED BY THE
C 1-NORM OF THE SOLUTION MATRIX.
C
C *****ALGORITHM NOTES:
C NONE.
C
C ****HISTORY:
C THIS SUBROUTINE WAS WRITTEN BY W.F. ARNOLD, NAVAL WEAPONS
C CENTER, CODE 35104, CHINA LAKE, CA 93555, AS PART OF THE
C SOFTWARE PACKAGE RICPACK, SEPTEMBER 1983.
C
C
C
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SUBROUTINE BALGEN (NMA,A,MBB,LOW,IGHCSCALECPERMWK)
C
C *****PARAMETERS:

INTEGER NMA,MB,LOW,IGH
DOUBLE PRECISION A(MA,N),B(MB,N),CSCALE(N),CPERM(N),WK(N,6)

C
C *N*ELOCAL VARIABLES:, cC NONE.

C *****FUNCTIONS:
C NONE.
C
C "* SUBROUTINES CALLED:

- C REDUCE, SCALEG, GRADEQ
-. C
-.' C

C
C ****PURPOSE:
C THIS SUBROUTINE BALANCES THE MATRICES A AND B TO IMPROVE THE
C ACCURACY OF COMPUTING THE EIGENSYSTEM OF THE GENERALIZED
C EIGENPROBLEM AOX a (LAMBDA)*B'X. THE ALGORITHM IS SPECIFI-

* C CALLY DESIGNED TO PRECEDE QZ TYPE ALGORITHMS, BUT IMPROVED
C PERFORMANCE IS EXPECTED FROM MOST EIGENSYSTEM SOLVERS.
C REF.: WARD, R. C., BALANCING THE GENERALIZED EIGENVALUE
C PROBLEM, SIAN J. SCI. STAT. COMPUT., VOL. 2, NO. 2, JUNE 1981,
C 141-152.
C
C ****PARAMETER DESCRIPTION:
C
C ON INPUT:
C
C MA,MB INTEGER
C ROW DIMENSIONS OF THE ARRAYS CONTAINING MATRICES
C A AND B RESPECTIVELY, AS DECLARED IN THE MAIN
C CALLING PROGRAM DIMENSION STATEMENT;
C

C N INTEGER
C ORDER OF THE MATRICES A AND B;
C
C A REAL(MA,N)
C CONTAINS THE A MATRIX OF THE GENERALIZED
C EIGENPROBLEM DEFINED ABOVE;
C
C B REAL(MB,N)
C CONTAINS THE B MATRIX OF THE GENERALIZED
C EIGENPROBLEM DEFINED ABOVE;
C
C WK REAL(N,6)
C WORK ARRAY THAT MUST CONTAIN AT LEAST 6*N STORAGE
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C LOCATIONS. WK IS ALTERED BY THIS SUBROUTINE.

C ON OUTPUT:

C

C AB CONTAIN THE BALANCED A AND B MATRICES;
C
C LOW INTEGER
C BEGINNING INDEX OF THE SUBMATRICES OF A AND B

S C CONTAINING THE NON-ISOLATED EIGENVALUES;
C
C IGH INTEGER
C ENDING INDEX OF THE SUBMATRICES OF A AND 8
C CONTAINING THE NON-ISOLATED EIGENVALUES. IF
C IGH = 1 (LOW : 1 ALSO), THE A AND B MATRICES HAVE
C BEEN PERMUTED INTO UPPER TRIANGULAR FORM AND HAVE

- C NOT BEEN BALANCED;
C
C CSCALE REAL(N)
C CONTAINS THE EXPONENTS OF THE COLUMN SCALING FACTORS
C IN ITS LOW THROUGH IGH LOCATIONS AND THE REDUCING
C COLUMN PERMUTATIONS IN ITS FIRST LOW-i AND ITS
C IGH+l THROUGH N LOCATIONS;
C
C CPERM REAL(N)
C CONTAINS THE COLUMN PERMUTATIONS APPLIED IN GRADING
C THE A AND B SUBMATRICES IN ITS LOW THROUGH IGH
C LOCATIONS;
C
C WK CONTAINS THE EXPONENTS OF THE ROW SCALING FACTORS
C IN ITS LOW THROUGH IGM LOCATIONS, THE REDUCING ROW
C PERMUTATIONS IN ITS FIRST LOW-I AND ITS IGH+I
C THROUGH N LOCATIONS, AND THE ROW PERMUTATIONS
C APPLIED IN GRADING THE A AND B SUBMATRICES IN ITS
C N LOW THROUGH N+IGH LOCATIONS.
C
C *****ALGORITHM NOTES:
C NONE.
C
C *****HISTORY:
C WRITTEN BY R. C. WARD .......
C
C
C
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4-.2

SUBROUTINE BALGBK (N,MZ,Z,M,LOW, IGH, CSCALE, CPERM)
C
C *****PARAMETERS:

INTEGER N,MZ,M,LOW,IGH
DOUBLE PRECISION Z(MZ,N),CSCALE(N),CPERM(N)

C
C ""'00LOCAL VARIABLES:
C NONE.
C
C ***FUNCTIONS:
C NONE.
C
C ***SUBROUTINES CALLED:
C GRADBK, SCALBK
C
C
C
C ***PURPOSE:
C THIS SUBROUTINE BACK TRANSFORMS THE EIGENVECTORS OF A
C GENERALILED EIGENVALUE PROBLEM A'X = (LAMBDA)*B'X, THAT WAS
C BALANCED BY SUBROUTINE BALGEN, TO THOSE OF THE ORIGINAL
C PROBLEM.
C REF.: WARD, R. C., BALANCING THE GENERALIZED EIGENVALUE
C PROBLEM, SIAM J. SCI. STAT. COMPUT., VOL. 2, NO. 2, JUNE 1981,
C 141-152.

*i C
C *"'PARAMETER DESCRIPTION:
C
C ON INPUT:
C
C MZ INTEGER
C ROW DIMENSION OF THE ARRAY Z AS SPECIFIED IN THE
C MAIN CALLING PROGRAM DIMENSION STATEMENT;
C
C N INTEGER
C ORDER OF THE MATRICES A AND B IN THE EIGENPROBLEM;
C
C M INTEGER
C SPECIFIES THE NUMBER OF EIGENVECTORS TO BE TRANS-
C FORMED;
C
C Z REAL(MZ,N)
C CONTAINS THE EIGENVECTORS TO BE TRANSFORMED;
C
C LOW INTEGER
C SPECIFIES THE BEGINNING INDEX OF THE SUBMATRICES OF
C A AND B WHICH WERE BALANCED;
C
C IGH INTEGER
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C SPECIFIES THE ENDING INDEX OF THE SUBMATRICES OF
C A AND B WHICH WERE BALANCED;
C
C CSCALE REAL(N)
C CONTAINS THE REDUCING COLUMN PERMUTATIONS AND
C SCALING INFORMATION AS RETURNED FROM BALGEN;

C CPERM REAL(N)
C CONTAINS IN ITS LOW THROUGH IGH LOCATIONS THE
C COLUMN PERMUTATIONS..APPLIED IN GRADING THE A
C AND B SUBMATRICES AS RETURNED FROM BALGEN.
C
C ON OUTPUT:
C
C Z CONTAINS THE TRANSFORMED EIGENVECTORS.
C
C ****ALGORITHM NOTES:
C NONE.
C
C ****HISTORY:
C WRITTEN BY R. C. WARD .......
C
C
C
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